answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
2 years ago
14

Solid aluminum metal and diatomic chlorine gas react spontaneously to form a solid product. Give the balanced chemical equation

(including phases) that describes this reaction.
Chemistry
1 answer:
ValentinkaMS [17]2 years ago
8 0

When solid aluminum metal is reacted with diatomic chlorine gas, solid aluminum chloride is formed. This reaction is an example of synthesis or chemical combination in which two elements, aluminum and chlorine combine to form a new compound aluminum chloride.

Word equation: Aluminum (s)+ Chlorine (g)---> Aluminum chloride(s)

Molecular formula of the product formed is AlCl_{3}.

Therefore the balanced chemical equation representing the reaction of solid aluminum with gaseous dichlorine can be represented as,

2Al(s) + 3Cl_{2}(g)-->2AlCl_{3}(s)

You might be interested in
The pOH of a solution is 6.0. Which statement is correct? Use p O H equals negative logarithm StartBracket upper O upper H super
Katen [24]

Answer:

The pH of the solution is 8.

Explanation:

To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:

1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:

pOH = –Log [OH-]

pOH = 6

6 = –Log [OH-]

–6 = Log [OH-]

[OH-] = Antilog (–6)

[OH-] = 1x10^–6 mol/L

2. The pH of the solution can be obtained as follow:

pH + pOH = 14

pOH = 6

pH + 6 = 14

pH = 14 – 6

pH = 8.

From the calculations made above,

[OH-] = 1x10^–6 mol/L

pH = 8.

Therefore, the correct answer is:

The pH of the solution is 8

3 0
1 year ago
Three mixtures were prepared from three very narrow molar mass distribution polystyrene samples with molar masses of 10,000, 30,
8_murik_8 [283]

Answer:

(a). 46,666.7 g/mol; 78,571.4 g/mol

(b). 86950g/mol; 46,666.7 g/mol.

(c). 86950g/mol; 43,333.33 g/mol

Explanation:

So, we are given the molar masses for the three samples as: 10,000, 30,000 and 100,000 g mol−1.

Thus, the equal number of molecule in each sample = ( 10,000 + 30,000 + 100,000 ) / 3 = 46,666.7 g/mol.

The average molar mass = [ ( 10,000)^2 + (30,000)^2 + 100,000)^2] ÷ 10,000 + 30,000 + 100,000 = 78,571. 4 g/mol.

(b). The equal masses of each sample = 3/[ ( 1/ 10,000) + (1/30,000 ) + (1/100,000) ] = 20930.23 g/mol.

Average molar mass = ( 10,000 + 30,000 + 100,000 ) / 3 = 46,666.7 g/mol.

(c). Equal masses of the two samples = (0.145 × 10,000) + (0.855 × 100,000)/ 0.145 + 0.855 = 86950g/mol.

The weight average molar mass = 1.7 + 10,000 + 100,000/ 1.7 + 1 = 43,333.33 g/mol.

6 0
1 year ago
2. Suggest four ways in which the concentration of PH3 could be increased in an equilibrium described by the following equation:
Nesterboy [21]

Answer

  • increase in temperature
  • decrease in pressure
  • continuous removal of PH3
  • adding more of P into the system

Explanation:

        In the reaction   P4(g)+6H2(g) ⇌ 4PH3(g);

  • The effect of temperature on equilibrium has to do with the heat of reaction. Recall that for an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. Thus, for an endothermic reaction, we can picture heat as being a reactant:

        heat+A⇌BΔH=+

  • Since the reaction is endothermic reaction, heat is a absorbed. Decreasing the temperature will shift the equilibrium to the left, while increasing the temperature will shift the equilibrium to the right forming more of PH3.
  • According to Le Chatelier’s principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. In the same Way, reducing the concentration of the product will also shift equilibrium to the right continually forming PH3 as it is removed.

4 0
1 year ago
According to the following reaction, how many grams of chloric acid (HClO3) are produced in the complete reaction of 31.6 grams
gogolik [260]

Answer:

m_{HClO_3}=12.7gHClO_3

Explanation:

Hello,

Considering the reaction:

3Cl_2(g)+3H_2O(l)-->5HCl+HClO_3

The molar masses of chlorine and chloric acid are:

M_{Cl_2}=35.45*2=70.9g/mol\\M_{HClO_3}=1+35.45+16*3=84.45g/mol

Now, we develop the stoichiometric relationship to find the mass of chloric acid, considering the molar ratio 3:1 between chlorine and chloric acid, as follows:

m_{HClO_3}=31.6gCl_2*\frac{1molCl_2}{70.9gCl_2} *\frac{1molHClO_3}{3mol Cl_2} *\frac{85.45g HClO_3}{1mol HClO_3} \\m_{HClO_3}=12.7gHClO_3

Best regards.

4 0
2 years ago
You have a 16.0-oz. (473-mL) glass of lemonade with a concentration of 2.66 M. The lemonade sits out on your counter for a coupl
salantis [7]

<u>Answer:</u> The new concentration of lemonade is 3.90 M

<u>Explanation:</u>

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}     .....(1)

Molarity of lemonade solution = 2.66 M

Volume of solution = 473 mL

Putting values in equation 1, we get:

2.66M=\frac{\text{Moles of lemonade}\times 1000}{473}\\\\\text{Moles of lemonade}=\frac{2.66\times 473}{1000}=1.26mol

Now, calculating the new concentration of lemonade by using equation 1:

Moles of lemonade = 1.26 moles

Volume of solution = (473 - 150) mL = 323 mL

Putting values in equation 1, we get:

\text{New concentration of lemonade}=\frac{1.26\times 1000}{323}\\\\\text{New concentration of lemonade}=3.90M

Hence, the new concentration of lemonade is 3.90 M

7 0
1 year ago
Other questions:
  • Write an equation that shows the formation of the phosphide ion from a neutral phosphorus atom.
    12·2 answers
  • What is the density of a piece of metal in g/cm3 if its mass is determined to be 42.20 g and it is in the shape of a cube, with
    7·2 answers
  • Q3.4. complex i transfers electrons to q (coenzyme q) in one of the reactions in the electron transport chain. which molecule is
    9·1 answer
  • A sample of a gas (1.50 mol) is contained in a 15.0 l cylinder. the temperature is increased from 100 °c to 150 °c. what is the
    14·1 answer
  • Eddie is going to do an experiment to find out which freezes more easily—distilled water or salt water. In what order should he
    9·2 answers
  • Calculate the wavelength in meters of electromagnetic radiation that has a frequency of 1.09 × 10⁸ s⁻¹. (c = 3.00 X 10⁸ m/s)
    6·1 answer
  • A student places 1.38g of unknown metal at 99.6C into 60.50g of water at 22.1C. The entire system reaches a uniform temperature
    14·1 answer
  • The question is on the pic, thanks :)
    7·1 answer
  • Now explain your diagnosis. Start your argument by writing something like this: "My group believes that Elisa has/does not have
    13·1 answer
  • What is the mass % of acetonitrile in a 2.17 M solution of acetonitrile (MM = 41.05 g/mol) in water? The density of the solution
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!