Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.
Answer is: glycerol because it is more viscous and has a larger molar mass.
Viscosity depends on intermolecular interactions.
The predominant intermolecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).
Answer : The mass of 7.0 m chain is, 15.12 kg
Explanation :
As we are given that,
The weight of the chain per unit length = 2.16 kg/m
Now we have to determine the mass of chain for 7.0 m length.
As, the mass of 1 m length of chain = 2.16 kg
So, the mass of 7.0 m length of chain = 
= 15.12 kg
Therefore, the mass of 7.0 m chain is, 15.12 kg
How many carbon atoms are there in a 1.3-carat diamond? Answer: 1.3 x 10^22 C atoms...
If a 1 carat = 0.20 g ... then 0.3 carat = 0.20 / 0.3 = 0.06 g
Thus, 1.3 carat = 0.26g
Find the moles first:
Moles= Grams / Mm of C
0.26 / 12.011 = 0.0216 mols of C
Atoms = Moles * Avogadro's number (6.022*10^23)
0.0216 * 6.022*10^23 = 1.3*10^22 C atoms
Hope this helps! :)
The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml