When we wish to convert a gas to liquid we have to either
a) decrease temperature
b) increase pressure
In case of fire extinguisher the CO2 is found to be in liquid state, this is as the CO2 is pressurized at high pressure which keeps CO2 in liquid state
the ideal pressure and temperature conditions when CO2 gas can be converted to CO2 gas
Pressure = 5 - 73 atm
Temperature = -57 to 31 degree Celsius
Answer:
the ball will move towards the big bully
Answer: The answer is 68142.4 Pa
Explanation:
Given that the initial properties of the cylindrical tank are :
Volume V1= 0.750m3
Temperature T1= 27C
Pressure P1 =7.5*10^3 Pa= 7500Pa
Final properties of the tank after decrease in volume and increase in temperature :
Volume V2 =0.480m3
Temperature T2 = 157C
Pressure P2 =?
Applying the gas law equation (Charles and Boyle's laws combined)
P1V1/T1 = P2V2/T2
(7500 * 0.750)/27 =( P2 * 0.480)/157
P2 =(7500 * 0.750* 157) / (0.480 *27)
P2 = 883125/12.96
P2 = 68142.4Pa
Therefore the pressure of the cylindrical tank after decrease in volume and increase in temperature is 68142.4Pa
1 mole of carbon contains 12 g
Thus, 34.6 moles will contain; 34.6 × 12 = 415.2 g
If a substance contains 89.2 % carbon,
then, (415.2/89.2) ×100 = 465.47 g of the substance will be required to yield 34.6 moles of carbon.
Bonds of two atoms of equal electronegativity are nonpolar covalent bonds.
Your second sentence is identical to the first sentence; I'll bet the second sentence is "Bonds between two atoms that are unequally electronegative are polar covalent bonds."