<u>Answer:</u>
<u>For a:</u> The equilibrium mixture contains primarily reactants.
<u>For b:</u> The equilibrium mixture contains primarily products.
<u>Explanation:</u>
There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given chemical reactions:
The chemical equation follows:

The expression of
for above reaction follows:
![K_{eq}=\frac{[CN^-][H_3O^+]}{[HCN][H_2O]}=6.2\times 10^{-10}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BCN%5E-%5D%5BH_3O%5E%2B%5D%7D%7B%5BHCN%5D%5BH_2O%5D%7D%3D6.2%5Ctimes%2010%5E%7B-10%7D)
As,
, the reaction will be favored on the reactant side.
Hence, the equilibrium mixture contains primarily reactants.
The chemical equation follows:

The expression of
for above reaction follows:
![K_{eq}=\frac{[HCl]^2}{[H_2][Cl_2]}=2.51\times 10^{4}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHCl%5D%5E2%7D%7B%5BH_2%5D%5BCl_2%5D%7D%3D2.51%5Ctimes%2010%5E%7B4%7D)
As,
, the reaction will be favored on the product side.
Hence, the equilibrium mixture contains primarily products.
Answer:
A titration
Explanation:
A common example of a titration is when we have an acid of unknown concentration, so we add a known volume of a base of known concentration. This process lets us determine the concentration of the acid.
By definition, a titration is a quantitative analysis, as we determine how much of an analyte is there in a sample. However, <u>there are quantitative analyzes which are not titrations</u>. This is why the most appropiate answer is<em> a titration</em>.
Answer:
C3H6O2
Explanation:
To find the empirical formula of the compound, we divide the amount in moles of each of the elements by the amount in mole of the element with the smallest number of mole. In this question, the element with the smallest number of moles is oxygen with 1.36 mole. Hence, we divide the number of moles of each element by this.
H = 4.10/1.36 = 3
O = 1.36/1.36 = 1
C = 2.05/1.36 = 1.5
We then multiply through by 2 to yield the compound with the empirical formula C3H6O2
N2 + 3H2 ---> 2NH3
mass of N2 = 28g
mass of H2 = 2g
mass of NH3 = 17g
according to the reaction:
28g N2----------------- 3*2g H2
85,5g N2-------------------- x
x = 18,32g H2 >>> so, nitrogen is excess
according to the reaction:
2*3g H2---------------------- 2*17g NH3
17,3g H2 ------------------------- x
x = 98,03g NH3
<u>answer: 98,03g of NH3</u>