answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
14

A tetrahedral carbon is ____________ hybridized while a linear carbon is ____________ hybridized. Two different compounds that h

ave the same molecular formula are known as ____________ . Pi (π) bonds are generally ____________ than sigma (σ) bonds. Hybridization is the combination of two or more ____________ orbitals to form the same number of ____________ orbitals, each having the same shape and energy. A ____________ bond is formed by side-by-side overlap of two p orbitals. The ____________ is a measure of an atom’s attraction for electrons in a bond and indicates how much a particular atom "wants" electrons. Two Lewis structures that have the same atomic placement and σ structure but a different arrangement of π electrons are called ____________ . All single bonds are ____________ bonds.
Chemistry
1 answer:
nalin [4]2 years ago
7 0

Answer:

1. Sp^3; Sp.

2. Isomers.

3. Weaker.

4. Atomic; hybrid.

5. Pi.

6. Electronegativity.

7. Resonance structures.

8. Sigma.

Explanation:

1. A tetrahedral carbon is Sp^3 hybridized while a linear carbon is Sp hybridized. A tetrahedral carbon typically comprises of four bonds that are 109. 5° apart while a linear carbon atom comprises of two (2) bonds that are 180° apart.

2. Two different compounds that have the same molecular formula are known as isomer. For example Butane and Isobutane, Methoxyethane and Propanol have the same molecular formula (numbers of hydrogen and carbon atoms) but different structural formula.

3. Pi (π) bonds are generally weaker than sigma (σ) bonds. This is because the orbital paths of Pi bonds are parallel thereby causing an overlap.

4. Hybridization is the combination of two or more atomic orbitals to form the same number of hybrid orbitals, each having the same shape and energy.

5. A Pi bond is formed by side-by-side overlap of two p orbitals.

6. The electronegativity is a measure of an atom’s attraction for electrons in a bond and indicates how much a particular atom "wants" electrons.

7. Two Lewis structures that have the same atomic placement and σ structure but a different arrangement of π electrons are called resonance structures.

8. All single bonds are Sigma bonds.

You might be interested in
Of the elements: b, c, f, li, and na. the element with the highest ionization energy is
padilas [110]
Carbon has the highest ionization energy as its energy 1086KJ\Mol and the rest are between 500 and 800. 
6 0
2 years ago
What is the pH of a solution made by mixing 15.00 mL of 0.100 M HCl with 50.00 mL of 0.100 M KOH? Assume that the volumes of the
denis23 [38]

Answer:

The correct answer is: pH = 12.73

Explanation:

The <em>neutralization reaction</em> between HCl and KOH is given by the following chemical equation:

HCl + KOH ⇒ KCl + H₂O

Since HCl is a strong acid and KOH is a strong base, HCl is completely dissociated into H⁺ and Cl⁻ ions, whereas KOH is dissociated completely into K⁺ and OH⁻ ions.

For acids, the number of equivalents is given by the moles of H⁺ ions (in this case: 1 equivalent per mol of HCl). For bases, the number of equivalents is given by the moles of OH⁻ ions (in this case: 1 equivalent per mol of KOH).

The H⁺ ions from HCl will react with OH⁻ ions of KOH to give H₂O. The pH is calculated from the difference between the equivalents of H⁺ and OH⁻:

equivalents of H⁺= volume HCl x Molarity HCl

                            = (15.0 mL x 1 L/1000 mL) x 0.100 mol/L

                            = 1.5 x 10⁻³ eq H⁺

equivalents of OH⁻= volume KOH x Molarity KOH

                               = (50.0 mL x 1 L/1000 mL) X 0.100 mol/L

                               = 5 x 10⁻³ eq OH⁻

There are more OH⁻ ions than H⁺ ions. The excess of OH⁻ (that did not react with H⁺ ions) is calculated as follows:

OH⁻ ions= (5 x 10⁻³ eq OH⁻) -  (1.5 x 10⁻³ eq H⁺) = 3.5 x 10⁻³ eq OH⁻= 3.5 x 10⁻³ moles OH⁻  

As the volumes of the solutions are additive, the total volume of the solution is:

V= 15.0 mL + 50.0 mL = 65.0 mL= 0.065 L

So, the concentration of OH⁻ ions in the solution is given by:

[OH⁻] = moles OH⁻/V= (3.5 x 10⁻³ moles OH⁻)/0.065 L = 0.054 mol/L = 0.054 M  

From  [OH⁻], we can calculate pOH:

pOH = -log [OH⁻] = -log (0.054) = 1.27

Finally, we know that pH + pOH= 14; so we calculate pH:

pH= 14 - pOH = 14 - 1,27 =  12.73                                                            

8 0
3 years ago
Given these reactions, where X represents a generic metal or metalloid 1) H2(g)+12O2(g)⟶H2O(g)ΔH1=−241.8 kJ 1) H2(g)+12O2(g)⟶H2O
Bond [772]

Answer:

ΔH = -793,6 kJ

Explanation:

It is possible to obtain ΔH of this reaction using Hess's law that says you can sum the half-reactions ΔH to obtain the ΔH of the global reaction:

If half-reactions are:

1) H₂(g) + ¹/₂O₂(g) ⟶ H₂O(g) ΔH₁ = −241.8 kJ

2) X(s) + 2Cl₂(g) ⟶ XCl₄(s) ΔH₂ = +356.9 kJ  

3) ¹/₂H₂(g) + ¹/₂Cl₂(g) ⟶ HCl(g) ΔH₃ = −92.3 kJ

4) X(s) + O₂(g) ⟶ XO₂(s) ΔH₄ = −639.1 kJ

5) H₂O(g) ⟶ H₂O(l) ΔH₅ = −44.0 kJ

The sum of (4) + 4×(3) - (2) - 2×(1) - 2×(5) is:

(4) X(s) + O₂(g) ⟶ XO₂(s) ΔH = −639.1 kJ

+4×(3) 2H₂(g) + 2Cl₂(g) ⟶ 4HCl(g) ΔH = −369,2 kJ

-(2) XCl₄(s) ⟶ X(s) + 2Cl₂(g) ΔH = -356,9 kJ

-2×(1) 2H₂O(g) ⟶ 2H₂(g) + O₂(g) ΔH = +483,6 kJ

-2×(5) 2H₂O(l) ⟶ 2H₂O(g) ΔH = +88.0 kJ

= <em>XCl₄(s) + 2H₂O(l) ⟶ XO₂(s) + 4HCl(g)</em>

Where ΔH is:

ΔH = -639,1 kJ -369,2 kJ -356,9 kJ +483,6 kJ +88,0 kJ

<em>ΔH = -793,6 kJ</em>

I hope it helps!

5 0
2 years ago
A 23.0g sample of a compound contains 12.0g of C, 3.0g of H, and 8.0g of O.What the empirical formula of the compound
Kryger [21]

Answer:

The empirical formula of compound is C₂H₆O.

Explanation:

Given data:

Mass of carbon = 12 g

Mass of hydrogen = 3 g

Mass of oxygen = 8 g

Empirical formula of compound = ?

Solution:

First of all we will calculate the gram atom of each elements.

no of gram atom of carbon = 12 g / 12 g/mol = 1 g atoms

no of gram atom of hydrogen = 3 g / 1 g/mol = 3 g atoms

no of gram atom of oxygen = 8 g / 16 g/mol = 0.5 g atoms

Now we will calculate the atomic ratio by dividing the gram atoms with the 0.5 because it is the smallest number among these three.

          C:H:O  =     1/0.5  :   3/0.5  :   0.5/0.5

          C:H:O  =     2      :     6      :     1

The empirical formula of compound will be C₂H₆O

5 0
2 years ago
Determine whether or not the mixing of each of the two solutions indicated below will result in a buffer.
WARRIOR [948]
Part A

75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF

This combination will form a buffer.

Explanation

Here, weak acid HF and its conjugate base F- is available in the solution

Part B

150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl

This combination cannot form a buffer.

Explanation

Here, moles of HF = 0.15 x 0.1 = 0.015 moles

Moles of HCl = 0.135 x 0.175 = 0.023

Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution

Part C

165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH

This combination will form a buffer.

Explanation

Moles of HF = 0.165 x 0.1 = 0.0165 moles

Moles of KOH = 0.135 x 0.05 = 0.00675 moles

Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer

Part D

125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl

This combination will form a buffer

Explanation

Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer

Part E

105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl

This combination will form a buffer

Explanation

Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles

Moles of HCl = 0.095 x 0.1 = 0.0095 moles

Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer
5 0
2 years ago
Other questions:
  • Identify the reaction type for each generic chemical equation
    15·2 answers
  • Write a balanced half-reaction describing the reduction of aqueous chromium(IV) cations to solid chromium.
    13·1 answer
  • Carbonic acid reacts with water to yield bicarbonate ions and hydronium ions: h2co3+h2o⇌hco3−+h3o+ identify the conjugate acid-b
    15·2 answers
  • Addition of 6 M HCl to which substance will NOT result
    10·2 answers
  • Isotonic saline solution, which has the same osomotic pressure as blood, can be prepared by dissolving 0.923 g of NaCl in enough
    7·1 answer
  • A 2 L bottle containing only air is sealed at a temperature of 22°C and a pressure of 0.982 atm. The bottle is placed in a freez
    12·1 answer
  • In a laboratory, Carlos places one plate with grape jelly and another plate with cooked brown rice inside an ant farm. The next
    12·2 answers
  • 50cm3 of sodium hydroxide solution was titrated against a solution of sulfuric acid. The concentration of the sodium hydroxide s
    7·1 answer
  • Dalton’s theory states that atoms are the smallest possible parts of elements. In a chemical reaction, atoms will rearrange and
    15·2 answers
  • Put the following elements into five pairs of elements that have similar chemical reactivity: F, Sr, P, Ca, O, Br, Rb, Sb, Li, S
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!