Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.
Answer:It is not an element because elements are the purest form of a substance; hence, they are no longer broken down by heating
Explanation:
Answer:
Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
Explanation:
Volume of NaOH = 1.7 ml = 0.0017 L
Molarity of NaOH = 0.0811 M
Moles of NaOH = n
n = 0.0001378 mol

According to reaction, 2 mol of NaOH neutralize 1 mol of sulfuric acid.
Then 0.0001378 mol of NaOH will neutralize:
of sulfuric acid.
Concentration of sulfuric acid in the acid rain sample: x

Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
Answer:
A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate
Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.
For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.
Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.
Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.
Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative