Answer:
Data is quantitative, data is categorical, data must be from a simple random sample, the data mut have normal distribution,
Step-by-step explanation:
When we make inference about one population proportion, we must ensure that the sample was taken randomly and observations follow a normal distribution. The sample size must be as large as possible with at least 10 counts of failures an 10 counts of successes. The individual observations must be independent. They must be quantified and categorized.
Answer: B - The mean height of all the students of the college.
Explanation:
In statistics, the concept of parameter refers to the value that you want to know about a population to characterize it, for example, mean height, mean age, etc.
In this case, the value that you want to know about the population of the college is the mean height of its students, so the correct option is B.
The following concepts are used in statistics that can be applied to the given example:
- Population (all students of the university).
- Parameter (mean height of university students).
- Sample (the 25 randomly selected students).
- Elements (the heights of the selected students).
- Estimator (average height of randomly selected students).
Answer:
yes agas can hold 10 l of gas
Step-by-step explanation:
.comvmessage on it
Fifty-two billion, six hundred and thirty-four million, two hundred and seventy-five thousand, three hundred and nine.
Answer:
The <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Step-by-step explanation:
The data provided is as follows:
25 to 34 45 to 54
1329 2268
1906 1965
2426 1149
1826 1591
1239 1682
1514 1851
1937 1367
1454 2158
Compute the mean and standard deviation for the group "25 to 34" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [1329+1906+...+1454]=\frac{13631}{8}=1703.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1086710.875}=394.01](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B1329%2B1906%2B...%2B1454%5D%3D%5Cfrac%7B13631%7D%7B8%7D%3D1703.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201086710.875%7D%3D394.01)
Compute the <em>z</em>-score for the group "25 to 34" as follows:

Compute the mean and standard deviation for the group "45 to 54" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [2268+1965+...+2158]=\frac{14031}{8}=1753.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1028888.875}=383.39](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B2268%2B1965%2B...%2B2158%5D%3D%5Cfrac%7B14031%7D%7B8%7D%3D1753.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201028888.875%7D%3D383.39)
Compute the <em>z</em>-score for the group "45 to 54" as follows:

Thus, the <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.