Answer:
Step-by-step explanation:
The given quadratic equation is
2x^2+3x-8 = 0
To find the roots of the equation. We will apply the general formula for quadratic equations
x = -b ± √b^2 - 4ac]/2a
from the equation,
a = 2
b = 3
c = -8
It becomes
x = [- 3 ± √3^2 - 4(2 × -8)]/2×2
x = - 3 ± √9 - 4(- 16)]/2×2
x = [- 3 ± √9 + 64]/2×2
x = [- 3 ± √73]/4
x = [- 3 ± 8.544]/4
x = (-3 + 8.544) /4 or x = (-3 - 8.544) / 4
x = 5.544/4 or - 11.544/4
x = 1.386 or x = - 2.886
The positive solution is 1.39 rounded up to the nearest hundredth
You should write a ( real world situation ) question that can only have whole numbers as a solution because you would divide and then you can not have a fraction left over so instead you add one. For instance there are 132 students going on a field trip. 20 students can fit on each bus. how many buses are needed? 7 because when you divide 132 by 20 you get 6 remainder 12. You can not just make 12 students walk to the location so you would add an extra bus.
Answer:
- Keisha’s experimental probability is 1/50.
- When the inventory is 4000 clocks, the prediction is that 3920 clocks will work.
- Keisha will have more than 97% of the products working.
Step-by-step explanation:
These are three prediction that Keisha can make based on the report that said 6 of 300 clocks tested weren't working.
Base on that information, Keisha can calculate an experimental probability, dividing <em>clocks that don't work properly </em>by <em>the total amount of clocks</em><em>:</em>
<em>
</em>
Therefore, the probability of success is 100% - 2% = 98%.
This means that Keisha has a probability of having 98% of all clocks functioning properly. So, she can make the prediction:<em> from 4000 clocks, 3920 will work. </em>Also, she can predict that she will actually have more than 97% working, because the experimental probability is higher than that.