Because the air inside the tires is kept at high pressure.
In fact, the force applied by the tires upwards to counter-balance the weight of the car (pushing downwards) is

where p is the pressure of the air inside the tires and A is the area of contact between the tire and the car. Therefore, a higher pressure means a larger force F, and eventually if the pressure p is higher enough the force F will be large enough to counterbalance the weight of the car.
<span>(cp of Copper = 387J / kg times degrees C; cp of Aluminum = 899 J / kg times degrees C; cp of Water = 4186J / kg times degrees C)
</span> Use the law of conservation of energy and assuming no heat loss to the surroundings, then
<span>Heat given up by copper = heat absorbed by water + heat absorbed by calorimeter
</span><span> Working formula is
</span> <span>Q = heat = MCp(delta T)
</span><span> where
</span><span> M = mass of the substance
</span><span> Cp = specific heat of the substance
</span><span> delta T = change in temperature
</span> Heat given up by copper = 0.10(387)(95 - T)
<span> Heat absorbed by water = 0.20(4186)(T - 15)
</span><span> Heat absorbed by calorimeter = 0.28(899)(T - 15)
</span> where
<span> T = final temperature of the system
</span><span> Substituting appropriate values,
</span> 0.10(387)(95 - T) = 0.20(4186)(T - 15) + 0.28(899)(T - 15)
<span> 38.7(95 - T) = 1088.92(T - 15)
</span><span> 3676.50 - 38.7T = 1088.92T - 16333.8
</span><span>1127.62T = 20010.3
</span><span> T = 17.75 C </span>
I believe this answer is B but my believing sucks so
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Answer:
D. the amount of chemical energy equals the amount of heat and light energy.
Explanation:
Given that the first law of thermodynamics affirmed that energy is neither created nor destroyed however, it can be transformed from one form to another. In other words, while, during the transformation of energy, no energy is lost, the input energy is also equal to output energy.
Hence, the chemical energy stored in the log is EQUAL to the heat and light energy produced by burning.