Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
Magnitude of impulse, |J| = 4 kg-m/s
Explanation:
It is given that,
Mass of cart 1, 
Mass of cart 2,
Initial speed of cart 1,
Initial speed of cart 2,
(stationary)
The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

V = 1 m/s
The magnitude of the impulse exerted by one cart on the other is given by:


J = -4 kg-m/s
or
|J| = 4 kg-m/s
So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.
Answer: The direction of the electric field, E→, is pointed in the +y direction.
Explanation:
One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.
The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.
Answer:
Explanation:
Given that,
A light bulb has a resistance of 2.9ohms
R = 2.9 ohms
And a battery of 1.5V is applied
V = 1.5 V
We want to find the rate of energy transformed
First we need to know what rate of energy is
Rate of energy implies that we want to find power. Power is the rate at which work is done
P = Workdone / time
Then,
In electronic, the power dissipated by a resistor is given as
P = V² / R
P = 1.5² / 2.9
P = 0.7759 W
P ≈ 0.776 W
So, the rate at which electrical energy transformed in the lightbulb is 0.776 Watts