Answer:
Question 13: For age groups y=1 and y=1.3 response is 8 microseconds.
Question 14: The club was making a loss between 11.28 and 4.88 years.
Step-by-step explanation:
Question 13:
The age group y for which the response rate R is 8 microseconds is given by the solution of the equation

We graph this equation and find the solutions to be

Since only positive solutions for y are valid in the real world we take only those.
Thus only for age groups y=1 and y=1.3 the response is 8 microseconds.
Question 14:
The footbal club is making a loss when 
Or

We graph this inequality and find the solutions to be
and 
Since in the real world only positive values for t are valid, we take the the second solution to be true.
Thus the club was making a loss in years 
Answer:

Step-by-step explanation:
x - number of adults
y - number of campers
<em>The room for 200 people</em>: x + y ≤ 200
<em>Each adult costs $4, and each camper costs $3</em>: 4x and 3y
<em>A maximum budget of $750</em>: 4x + 3y ≤ 750
Answer:
(3 x + 2) (5 x - 4)
Step-by-step explanation:
Factor the following:
15 x^2 - 2 x - 8
Factor the quadratic 15 x^2 - 2 x - 8. The coefficient of x^2 is 15 and the constant term is -8. The product of 15 and -8 is -120. The factors of -120 which sum to -2 are 10 and -12. So 15 x^2 - 2 x - 8 = 15 x^2 - 12 x + 10 x - 8 = 5 x (3 x + 2) - 4 (3 x + 2):
5 x (3 x + 2) - 4 (3 x + 2)
Factor 3 x + 2 from 5 x (3 x + 2) - 4 (3 x + 2):
Answer: (3 x + 2) (5 x - 4)
Answer:
Answer E
Step-by-step explanation
The statement gives a probability of approximately 0.022 for the difference in sample proportions, pˆA−pˆS, being greater than 0.
Answer:
The area of the region between the two curves by integration over the x-axis is 9.9 square units.
Step-by-step explanation:
This case represents a definite integral, in which lower and upper limits are needed, which corresponds to the points where both intersect each other. That is:

Given that resulting expression is a second order polynomial of the form
, there are two real and distinct solutions. Roots of the expression are:
and
.
Now, it is also required to determine which part of the interval
is equal to a number greater than zero (positive). That is:


and
.
Therefore, exists two sub-intervals:
and
. Besides,
in each sub-interval. The definite integral of the region between the two curves over the x-axis is:




The area of the region between the two curves by integration over the x-axis is 9.9 square units.