If we letx as the number of Caramel Apple lollipops soldy as the number of Gourmet lollipops sold
Then, we can make an inequality from the given which is0.50x + 0.75y ≥ 250The graph of this inequality would have a y intercept of500 and a slope of 2/3 and includes all the points above the solid line.
hope this helps and brainliest :)
Try this option (see the attachment), if it is possible check result in other sources.
Hi there
If the amount deposited at (end) of each year, use the formula of the (future/present) value of annuity ordinary
If the amount deposited at the (beginning) of each year use the formula of the (future/present) value of annuity due
So
FvAo=5,000×(((1+0.0245)^(5)−1)
÷(0.0245))
=26,255.38...answer
Hope it helps
the given expression is :
2(4√16x) - 2(4√2y) + 34√81x - 4(4√32y)
⇒ 8(√16x) - 8(√2y) + 34√81x - 16√32y
⇒8×4√x - 8√2y + 34×9√x - 16√16×2y [∵ √16 = 4 and √81 = 9]
⇒32√x - 8√2y + 306√x - 16×4√2y
⇒(32√x + 306√x) - 8√2y - 16×4√2y
⇒338√x -72√2y
Given : tan 235 = 2 tan 20 + tan 215
To Find : prove that
Solution:
tan 235 = 2 tan 20 + tan 215
Tan x = Tan (180 + x)
tan 235 = tan ( 180 + 55) = tan55
tan 215 = tan (180 + 35) = tan 35
=> tan 55 = 2tan 20 + tan 35
55 = 20 + 35
=> 20 = 55 - 35
taking Tan both sides
=> Tan 20 = Tan ( 55 - 35)
=> Tan 20 = (Tan55 - Tan35) /(1 + Tan55 . Tan35)
Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1
=> Tan 20 = (Tan 55 - Tan 35) /(1 + 1)
=> Tan 20 = (Tan 55 - Tan 35) /2
=> 2 Tan 20 = Tan 55 - Tan 35
=> 2 Tan 20 + Tan 35 = Tan 55
=> tan 55 = 2tan 20 + tan 35
=> tan 235 = 2tan 20 + tan 215
QED
Hence Proved