answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
2 years ago
13

1/3 of Murka’s age is twice as much as Ivan’s age. What is the ratio of Murka’s age to Ivan’s age?

Mathematics
1 answer:
kenny6666 [7]2 years ago
4 0
Let these two ages be i and m.  Then (1/3)m = 2i, which becomes m = 6i when we multiply both sides by 3.

Ratio:

M's age      6i
---------- = ------ = 6
I's age         i

M is 6 times older than Ivan.

<span>The ratio of M's age to Ivan's is 6:1, or just 6.


</span>
You might be interested in
Express the solutions of −34 &lt; x &lt; 10 in three different ways. Which is the solution in interval notation?
Phantasy [73]

-34

5 0
1 year ago
Read 2 more answers
Solve the system of linear equations using multiplication.
Anna71 [15]

Answer:

(8,-1)

Step-by-step explanation:

The given system is:

3x+3y=21

6x+12y=36

Since I prefer to use smaller numbers I'm going to divide both sides of the first equation by 3 and both sides of the equation equation by 6.

This gives me the system:

x+y=7

x+2y=6

We could solve the first equation for x and replace the second x with that.

Let's do that.

x+y=7

Subtract y on both sides:

x=7-y

So we are replacing the second x in the second equation with (7-y) which gives us:

(7-y)+2y=6

7-y+2y=6

7+y=6

y=6-7

y=-1

Now recall the first equation we arranged so that x was the subject. I'm referring to x=7-y.

We can now find x given that y=-1 using the equation x=7-y.

Let's do that.

x=7-y with y=-1:

x=7-(-1)

x=7+1

x=8

So the solution is (8,-1).

We can check this point by plugging it into both equations.

If both equations render true for that point, then we have verify the solution.

Let's try it.

3x+3y=21 with (x,y)=(8,-1):

3(8)+3(-1)=21

24+(-3)=21

21=21 is a true equation so the "solution" looks promising still.

6x+12y=36 with (x,y)=(8,-1):

6(8)+12(-1)=36

48+(-12)=36

36=36 is also true so the solution has been verified since both equations render true for that point.

5 0
2 years ago
Read 2 more answers
If DE=4x+10, EF =2x-1, and DF=9x-15, find DF
svetoff [14.1K]

Answer:


Step-by-step explanation:

If DE = 4x+10,EF =2X -1, and DF= 9x - 15 find DF

(de + ef ) - df = 2e || 2e/2 = e || ed - e = d || ef - e = f || f + d =  df

de + ef = 6x + 11 || (6x +11) - df = -3x -6 || 2e/2 = -3x/2 - 3  || (-3x/2 - 3) - de = x/2 + 7||  (- 3x/2 - 3) - ef = -x/2 - 1|| d + f = 6


7 0
2 years ago
Read 2 more answers
Javier asks his mother how old a tree in their yard is. His mother says, “The sum of 10 and two-thirds of that tree’s age, in ye
sdas [7]

Answer:

10 + (\frac{2}{3}) a = 50 is the CORRECT equation.

Step-by-step explanation:

The given question is INCOMPLETE.

Javier asks his mother how old a tree in their yard is. His mother says, “The sum of 10 and two-thirds of that tree’s age, in years, is equal to 50.” Javier writes the equation { 10 + 2/3} where a is the tree’s age in years. His equation is not correct. What error did he make?

Now here:

a:  The tree’s age in years.

Also,  “The sum of 10 and two-thirds of that tree’s age, in years, is equal to 50.”

⇒ 10 +  two-thirds of that tree’s age  = 50

\implies 10 + (\frac{2}{3}) a = 50

But in the equation written by Javier, the the third fraction is NOT MULTIPLIED by the age of the tree a in Years.

So, the written equation by Javier is Incorrect.

Now, solving the written correct equation for the value of a, we get:

\implies 10 + (\frac{2}{3}) a = 50\\\implies  (\frac{2}{3}) a = 40\\\implies a = 40 \times  (\frac{3}{2})  = 60\\\implies a  = 60

Hence the correct  age of the tree = 60 years

5 0
2 years ago
If john can drink one barrel of water in 6 days, and mary can drink one barrel of water in 12 days, how long would it take them
krek1111 [17]
Hello,

A good first step to take would be to calculate how much of a barrel John and Mary can drink together in 1 day.


If John can drink 1 barrel in 6 days, then every day he can drink 1/6 of a barrel.
If Mary can drink 1 barrel in 12 days, then every day she can drink 1/12 of a barrel. 

Every day, the total that John and Mary can drink will be (1/6) + (1/12) = (1/4) of a barrel.

If we want to know how many days it will take for them to drink 1 barrel of water together, and they drink 1/4 of a gallon every day, we do 

(1) / (1/4) = 1 * (4/1) = 4 days

It will take 4 days for John and Mary to drink 1 barrel together.

Hope this helps!


6 0
2 years ago
Other questions:
  • Using the distributive property, Marta multiplied the binomial (2x + 3) by the trinomial (x2 + x – 2) and got the expression bel
    12·2 answers
  • The fifth-grade classes at Brookfield School used five identical buses to go on a field trip. •There were a total of 40 seats on
    12·1 answer
  • Carly has 2 more nickels than dimes in her pocket. She has 40 cents. How many nickels does Carly have How many dimes does Carly
    9·2 answers
  • Triangle PQR is dilated by a scale factor of 1.5 to form triangle P′Q′R′. This triangle is then dilated by a scale factor of 2 t
    12·2 answers
  • Emily and her children went into a grocery store and she bought $20.80 worth of bananas and peaches. Each banana costs $0.80 and
    7·1 answer
  • Factor completely 16x8 − 1.
    13·2 answers
  • The sum of a number, n, and 8 is multiplied by -4, and the result is -12.
    14·1 answer
  • Kermit's favorite iced tea is made with 151515 tea bags in every 222 liters of water. Peggy made a 121212-liter batch of iced te
    7·1 answer
  • Square root 25a^2. help me pls its a emergency
    11·1 answer
  • Ana can swim at a rate of 3/8 mile in 1/3 hour how many minutes would it take her to swim 1 mile at this rate round your answer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!