answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
2 years ago
7

Inez says you can plot 4/0 on a number line, but Jeremiah says you cannot. Who is correct?

Mathematics
1 answer:
Vera_Pavlovna [14]2 years ago
6 0

Answer:

Jeremiah.

Step-by-step explanation:

Anything divided by 0 is undefined. There is no such number that can be divisible by 0.

You might be interested in
A treasure map says that a treasure is buried so that it partitions the distance between a rock and a tree in a 5:9 ratio. Marin
djyliett [7]

Answer:

A)  (7.6, 8.8)

which are the coordinates of the treasure.

Missing Problem Statement:

Given Options:

A) (11.4, 14.2)

B) (7.6, 8.8)

C) (5.7, 7.5)

D) (10.2, 12.6)

I have added the picture showing the traced map onto a coordinate plane to find exact location of treasure.

The coordinates of Tree are (16,21)

Coordinates of rock are (3,2)

Step-by-step explanation:

Let,

Coordinates of treasure be (a,b)

d_{1}= distance from tree to treasure

d_{2}=distance from rock to treasure

d_{1}=\sqrt{(16-x)^2 + (21-y)^2}

d_{2}=\sqrt{x\2 + (y-2)^2}

Given ratio between rock and tree, \frac{d_{2}}{ d_{1}}=\frac{5}{9}= 0.55_______(Equation.1)

which will be used to locate the treasure.

Now we just need to cross check by putting the coordinates given in the options one by one to find out value of d_{1},d_{2} and checking if it satisfies the Equation 1.

Check (A) (11.4, 14.2)

d_{2}= 14.8, d_{1}= 8.2,

\frac{d_{2}}{ d_{1}}= 1.8

Check (C) (5.7, 7.5)

d_{2}= 6.13, d_{1}= 16.98,

\frac{d_{2}}{ d_{1}}= 0.36

Check (D) (10.2, 12.6)

d_{2}= 12.8, d_{1}= 10.2,

\frac{d_{2}}{ d_{1}}= 1.25

Check (B) (7.6, 8.8)

d_{2}= 8.2, d_{1}= 14.8,

\frac{d_{2}}{ d_{1}}= 0.55

Which satisfies Equation 1, such that ratio between rock and tree is 5:9 or  \frac{d_{2}}{ d_{1}}=\frac{5}{9}= 0.55

So, the coordinates of the treasure are (B) (7.6, 8.8)

7 0
2 years ago
Read 2 more answers
You buy a pair of jeans at a department store. Jeans 39.99 Discount -10.00 Subtotal 29.99 Sales tax 1.95 Total 31.94 a. What is
Mariana [72]
A)

if 39.99 is the 100%, what is 10 in percentage? well

\bf \begin{array}{ccllll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
39.99&100\\
10&x
\end{array}\implies \cfrac{39.99}{10}=\cfrac{100}{x}

solve for "x".

b)

now, with the discount, the amount is 29.99, thus if 29.99 is the 100%, what is 1.95 from it in percentage?

\bf \begin{array}{ccllll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
29.99&100\\
1.95&x
\end{array}\implies \cfrac{29.99}{1.95}=\cfrac{100}{x}

solve for "x".

c)

the original price is 39.99, the markup on that is 60%, how much is that?
well 

\bf \begin{array}{ccllll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
39.99&100\\
x&60
\end{array}\implies \cfrac{39.99}{x}=\cfrac{100}{60}\implies 39.99\cdot 60=100x
\\\\\\
\cfrac{39.99\cdot 60}{100}=x\implies 23.994=x

now, after the discount, the price is 29.99, how much is 23.994 in percentage of 29.99?

well  \bf \begin{array}{ccllll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
29.99&100\\
23.994&x
\end{array}\implies \cfrac{29.99}{23.994}=\cfrac{100}{x}

solve for "x".
8 0
2 years ago
It costs 20 cents to receive a photo and 30 cents to send a photo from a cellphone. C is the cost of one photo (either sent or r
ddd [48]

Answer:

(a) PC(C)=     \left \{ {{0.6 \ \ \ \ x=20} \atop 0.4 \ \ \ \ {x=30}} \right. \\\ 0 \ \ \ \ \ \ \ else

(b) E[C] = 24 cents

Step-by-step explanation:

Given:

Cost to receive a photo = 20 cents

Cost to send a photo = 30 cents

Probability of receiving a photo = 0.6

Probability of sending a photo = 0.4

We need to find

(a) PC(c)

(b) E[C]

Solution:

(a)

PC(C)=     \left \{ {{0.6 \ \ \ \ c=20} \atop 0.4 \ \ \ \ {c=30}} \right. \\\ 0 \ \ \ \ \ \ \ else

(b)

Expected value can be calculated by multiplying probability with cost.

E[C] = Probability × cost

E[C] = 0.6\times20 +0.4 \times 30 = 12 + 12 = 24\  cents

3 0
1 year ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
walnut grower estimates from past records that if 20 trees are planted per acre, then each tree will average 60 pounds of nuts p
laila [671]

Answer:

5 trees should be planted to maximize the yield per acre,

The maximum yield would be 1250

Step-by-step explanation:

Given,

The original number of trees per acre = 20,

Average pounds of nuts by a tree = 60,

Let x be the times of increment in number of trees,

So, the new number of trees planted per acre = 20 + x

∵ for each additional tree planted per acre, the average yield per tree drops 2 pounds,

So, the new number of pounds of nut = (60 - 2x)

Thus, the total yield per acre,

Y(x) = (20+x)(60-2x)

Differentiating with respect to t ( time ),

Y'(x) = (20+x)(-2) + 60 - 2x = -40 - 2x + 60 - 2x = 20 - 4x

Again differentiating with respect to t,

Y''(x) = -4

For maxima or minima,

Y'(x) = 0

⇒ 20 - 4x = 0

⇒ 20 = 4x

⇒ x = 5,

For x = 5, Y''(x) = negative,

Hence, Y(x) is maximum for x = 5,

And, maximum value of Y(x) = (20+5)(60 - 10) = 25(50) = 1250,

i.e. 5 trees should be planted to maximize the yield per acre,

and the maximum yield would be 1250 pounds

4 0
1 year ago
Other questions:
  • The after school craft center has 15 boxes of 64 crayons each. In 12 of the boxes , 28 of the crayons have not been used. All th
    10·1 answer
  • I need help with this
    14·1 answer
  • Suppose your club is selling candles to raise money. It cost $100 to rent a booth from which to sell the candles. If the candles
    8·2 answers
  • Anna is at the movie theater and has $35 to spend. She spends $9.50 on a ticket and wants to buy some snacks. Each snack costs $
    12·2 answers
  • Let F(x, y, z) = (5ex sin(y))i + (5ex cos(y))j + 7z2k. Evaluate the integral C F · ds, where c(t) = 8 t , t3, exp( t ) , 0 ≤ t ≤
    10·1 answer
  • A case of Scout cookies has 10 cartons. A carton has 12 boxes. The amount you earn on a whole case is 10(12x) dollars.
    7·1 answer
  • Sandy put $1000 in a savings account which pays 3% interest per year. After four years how much money will
    15·2 answers
  • Alexis uses toy blocks to build a model of a building each toy block is 1 cubic inch The first three floors of the model are Mad
    9·1 answer
  • Write an explicit rule for the geometric sequence:
    13·1 answer
  • Solve the equation: 5x + 45 = 35 What is the value of x?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!