Answer : The mass of 7.0 m chain is, 15.12 kg
Explanation :
As we are given that,
The weight of the chain per unit length = 2.16 kg/m
Now we have to determine the mass of chain for 7.0 m length.
As, the mass of 1 m length of chain = 2.16 kg
So, the mass of 7.0 m length of chain = 
= 15.12 kg
Therefore, the mass of 7.0 m chain is, 15.12 kg
Answer:
Ar < Cl - < S2-
Explanation:
All the species written above are isoelectronic. This means that they all possess the same number of electrons. All the species above possess 18 electrons, the noble gas electron configuration.
However, for isoelectronic species, the greater the atomic number of the specie, the smaller it is. This is because, greater atomic number implies that their are more protons in the nucleus exerting a greater attractive force on the electrons thereby making the specie smaller in size due to high electrostatic attraction.
Answer:
B
Explanation:
Firstly, we will need to calculate the number of moles. To do this, we make use of the ideal gas equation
PV = nRT
n = PV/RT
The parameters have the following values according to the question:
P = 780mmHg, we convert this to pascal.
760mHG = 101325pa
780mmHg = xpa
x = (780 * 101325)/760 = 103,991 Pa
V= 400ml = 0.4L
T = 135C = 135 + 273.15 = 408.15K
n = ?
R = 8314.463LPa/K.mol
Substituting these values into the equation yields the following:
n = (103991 * 0.4)/(8314.463 * 408.15)
= 0.012 moles
Now we know 1 mole contains 6.02 * 10^23 molecules, hence, 0.012moles will contain = 0.012 * 6.02 * 10^23 = 7.38 * 10^21 molecules
I’m writing this equation by memory, so I hope I’m correct. It’s been about four months since we used in in my chem class:
(P-(n^2•a)/V^2)(V-nb)=nRT
Plugging in values given:
(P-(1•1.35)/(1.42^2))(1.42-(1•0.0322))=(1)(0.0821)(300)
(P-(1.35/2.016))(1.42-0.0322)=24.63
(P-(1.35/2.016))=17.75
P=18.42 atm
The pressure exerted by the Argon would be 18.42 atmospheres.
Molecular formula is an integral multiple of the empirical formula