Option C: I and II only.
The atoms have subparticles and the isotops are atoms of the same element that differ in the number of neutrons.
Answer: 72.41% and 26.90% respectively.
Explanation:
At 60°C, you can dissolve 46.4g of acetanilide in 100mL of ethanol. If you lower the temperature, at 0°C, you can dissolve just 12.8g, which means (46.4g-12.8g)=33.6g of acetanilide must have precipitated from the solution.
We can calculate recovery as:

So the answer to the first question is 72.41%.
For the second part just use the same formula, the mass of the precipitate is the final mass minus the initial mass, (171mg-125mg)=46mg.

So the answer to the second question is 26.90%.
Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
How it looks. basically the thing that tells you how it change. for example if an ice cube was melted (heat), it only changed physically not chemically as the h20 molecules are still there. however lets say you burn woos— you cant get that would back. its ash now and it has changed chemically.
Answer:
The answer is A (number 1)