The number of sp2 hybrid orbitals on the carbon atom in CO32– is 3. Because hybrids = combination of 2 different types of orbitals
sp2 = 1/3 s character + 2/3 p character
Answer: The concentration of excess
in solution is 0.017 M.
Explanation:
1. 
moles of 
1 mole of
give = 1 mole of 
Thus 0.019 moles of
give = 0.019 mole of 
2. moles of 
According to stoichiometry:
1 mole of
gives = 2 moles of 
Thus 0.012 moles of
give =
moles of 

As 1 mole of
neutralize 1 mole of 
0.019 mole of
will neutralize 0.019 mole of 
Thus (0.024-0.019)= 0.005 moles of
will be left.
![[OH^-]=\frac{\text {moles left}}{\text {Total volume in L}}=\frac{0.005}{0.3L}=0.017M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B%5Ctext%20%7Bmoles%20left%7D%7D%7B%5Ctext%20%7BTotal%20volume%20in%20L%7D%7D%3D%5Cfrac%7B0.005%7D%7B0.3L%7D%3D0.017M)
Thus molarity of
in solution is 0.017 M.
<span>the answer is
1A = 10^-10 m
so </span>1.61Å = 1.61 x 10^-10 m
he distance between the atoms of H−I is 1.61 x 10^-10 m
Answer:
Explanation:
Percent composition is percentage by the mass of element present in the compound.
The formula for chromium(III) nitrate is 
Molar mass of chromium(III) nitrate = 238.011 g/mol
1 mole of chromium(III) nitrate contains 9 moles of oxygen
Molar mass of oxygen = 16 g/mol
So, Mass= Molar mass*Moles = 16*9 g = 144 g
We have to know the number of Na⁺ ions in the unit cell.
The number of Na⁺ ions in the unit cell is (D) 8.
Sodium oxide (Na2O) crystallizes in a structure in which the O2– ions are in a face - centered cubic lattice and the Na+ ions are in tetrahedral holes.
O²⁻ ions are in a face centred cubic lattice, so the number of O²⁻ ions per unit cell is equal to 4. The number of tetrahedral hole= 2 X 4=8. Na+ ions are present in tetrahedral holes, which indicates there are 8 number of Na+ ions in the unit cell.