The equilibrium constant is 0.0022.
Explanation:
The values given in the problem is
ΔG° = 1.22 ×10⁵ J/mol
T = 2400 K.
R = 8.314 J mol⁻¹ K⁻¹
The Gibbs free energy should be minimum for a spontaneous reaction and equilibrium state of any reaction is spontaneous reaction. So on simplification, the thermodynamic properties of the equilibrium constant can be obtained as related to Gibbs free energy change at constant temperature.
The relation between Gibbs free energy change with equilibrium constant is ΔG° = -RT ln K
So, here K is the equilibrium constant. Now, substitute all the given values in the corresponding parameters of the above equation.
We get,



So, the equilibrium constant is 0.0022.
<span>It's volume is 0.48 cm3Specific </span>
C. Sulfur and oxygen (non metals) forms a covalent bond while the magnesium (a metal) will react with both non metals to form an ionic bond
Answer:
The coefficient of O2 is 11
Explanation:
Step 1:
The equation for the reaction:
FeS2 + O2 → SO2 + Fe2O3
Step 2:
Balancing the equation. The equation can be balance as follow:
FeS2 + O2 → SO2 + Fe2O3
There are 2 atoms of Fe on the right side and 1 atom on the left. It can be balance by putting 2 in front of FeS2 as shown below:
2FeS2 + O2 → SO2 + Fe2O3
There are 4 atoms of S on the left side and 1 atom on the right side. It can be balance by putting 4 in front of SO2 as shown below:
2FeS2 + O2 → 4SO2 + Fe2O3
Now, there are a total of 11 atoms of O on the right side and 2 atoms on the left side. It can be balance by putting 11/2 in front of O2 as shown below:
2FeS2 + 11/2O2 → 4SO2 + Fe2O3
Multiply through by 2 to clear the fraction as shown below:
4FeS2 + 11O2 → 8SO2 + 2Fe2O3
Now the equation is balanced.
The coefficient of O2 is 11