The amount of matter stays the same between the substances,
Answer:
It is a crystalline solid.
It is a white crystalline solid that is practically insoluble in water, soluble in diethyl ether and slightly soluble in ethanol
Explanation:
The difference between crystalline and amorphous is how this chemical compound transmits light.
When a chemical material or compound is said to be crystalline, it is the opposite of what we imagine, since its color is opaque and does not allow light to pass through it, that is why this compound, being crystalline, is opaque white. and if you want to see through it you will not see the other way since it is not "transparent".
On the other hand, amorphous chemical materials or compounds are seen through them from one side to the other, they are considered "transparent" and do not refract any color from the color range of light. That is why they are not opaque either, nor do they have a particular color like white. A clear example of an amorphous structure is glass or crystal.
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
The value of X is 10 hence the formula of unknown hydrate sodium sulfate is NaSO4.10 H20
calculation
step 1:find the moles of NaSO4 and the moles of H2O
moles= mass/molar mass
moles of Na2SO4=1.42÷142=0.01 moles
moles of H20= mass of H2O/molar mass of H2O
mass of H2O= 3.22-1.42=1.8g
mole of H2O is therefore 1.8÷18=0.1 moles
step 2: find the mole ratio by dividing each mole by smallest number of mole (0.01)
that is Na2So4= 0.01/0.01 =1
H2O= 0.1/0.01=10
Answer:
The final pressure of the gas mixture after the addition of the Ar gas is P₂= 2.25 atm
Explanation:
Using the ideal gas law
PV=nRT
if the Volume V = constant (rigid container) and assuming that the Ar added is at the same temperature as the gases that were in the container before the addition, the only way to increase P is by the number of moles n . Therefore
Inicial state ) P₁V=n₁RT
Final state ) P₂V=n₂RT
dividing both equations
P₂/P₁ = n₂/n₁ → P₂= P₁ * n₂/n₁
now we have to determine P₁ and n₂ /n₁.
For P₁ , we use the Dalton`s law , where p ar1 is the partial pressure of the argon initially and x ar1 is the initial molar fraction of argon (=0.5 since is equimolar mixture of 2 components)
p ar₁ = P₁ * x ar₁ → P₁ = p ar₁ / x ar₁ = 0.75 atm / 0.5 = 1.5 atm
n₁ = n ar₁ + n N₁ = n ar₁ + n ar₁ = 2 n ar₁
n₂ = n ar₂ + n N₂ = 2 n ar₁ + n ar₁ = 3 n ar₁
n₂ /n₁ = 3/2
therefore
P₂= P₁ * n₂/n₁ = 1.5 atm * 3/2 = 2.25 atm
P₂= 2.25 atm