Answer:
0.3229 M HBr(aq)
0.08436M H₂SO₄(aq)
Explanation:
<em>Stu Dent has finished his titration, and he comes to you for help with the calculations. He tells you that 20.00 mL of unknown concentration HBr(aq) required 18.45 mL of 0.3500 M NaOH(aq) to neutralize it, to the point where thymol blue indicator changed from pale yellow to very pale blue. Calculate the concentration (molarity) of Stu's HBr(aq) sample.</em>
<em />
Let's consider the balanced equation for the reaction between HBr(aq) and NaOH(aq).
NaOH(aq) + HBr(aq) ⇄ NaBr(aq) + H₂O(l)
When the neutralization is complete, all the HBr present reacts with NaOH in a 1:1 molar ratio.

<em>Kemmi Major also does a titration. She measures 25.00 mL of unknown concentration H₂SO₄(aq) and titrates it with 0.1000 M NaOH(aq). When she has added 42.18 mL of the base, her phenolphthalein indicator turns light pink. What is the concentration (molarity) of Kemmi's H₂SO₄(aq) sample?</em>
<em />
Let's consider the balanced equation for the reaction between H₂SO₄(aq) and NaOH(aq).
2 NaOH(aq) + H₂SO₄(aq) ⇄ Na₂SO₄(aq) + 2 H₂O(l)
When the neutralization is complete, all the H₂SO₄ present reacts with NaOH in a 1:2 molar ratio.

Answer:
P = 20.1697 atm
Explanation:
In this case we need to use the ideal gas equation which is:
PV = nRT (1)
Where:
P: Pressure (atm)
V: Volume (L)
n: moles
R: universal gas constant (=0.082 L atm / K mol)
T: Temperature
From here, we can solve for pressure:
P = nRT/V (2)
According to the given data, we have the temperature (T = 20 °C, transformed in Kelvin is 293 K), the moles (n = 125 moles), and we just need the volume. But the volume can be calculated using the data of the cylinder dimensions.
The volume for any cylinder would be:
V = πr²h (3)
Replacing the data here, we can solve for the volume:
V = π * (17)² * 164
V = 148,898.93 cm³
This volume converted in Liters would be:
V = 148,898.93 mL * 1 L / 1000 mL
V = 148.899 L
Now we can solve for pressure:
P = 125 * 0.082 * 293 / 148.899
<h2>
P = 20.1697 atm</h2>
The first step is to calculate the molarity of each compound:
final volume of solution = 157 + 139 = 296 mL
molarity of <span>nac2h3o2 = (157 x 0.35) / 296 = 0.1856 molar
molarity of </span><span>hc2h3o2 = (139 x 0.46) / 296 = 0.216 molar
Then, we calculate the pH as follows:
pKa of acetic acid = -log(</span><span>1.75 × 10^-5) = 4.7569
pH = pKa + </span><span> log ([salt] / [acid])
= </span>4.7569 + log(0.1856 / 0.216)
= 4.691
Acetaminophen as a chemical formula of C8H9NO2. The molar
masses are:
C8H9NO2 = 151.163 g/mol
C = 12 g/mol
H = 1 g/mol
N = 14 g/mol
O = 16 g/mol
<span>TO get the mass percent, simply multiply the molar mass of
each elements with the number of the
element divide by the molar mass of acetaminophen, that is:</span>
%C = [(12 * 8) / 151.163] * 100% = 63.50%
%H = [(1 * 9) / 151.163] * 100% = 5.954%
%N = [(14 * 1) / 151.163] * 100% = 9.262%
<span>%O = [(16 * 2) / 151.163] * 100% = 21.17% </span>