Answer:
1.22 mL
Explanation:
Let's consider the following balanced reaction.
2 AgNO₃ + BaCl₂ ⇄ Ba(NO₃)₂ + 2 AgCl
The molar mass of silver chloride is 143.32 g/mol. The moles corresponding to 0.525 g are:
0.525 g × (1 mol/143.32 g) = 3.66 × 10⁻³ mol
The molar ratio of AgCl to BaCl₂ is 2:1. The moles of BaCl₂ are 1/2 × 3.66 × 10⁻³ mol = 1.83 × 10⁻³ mol.
The volume of 1.50 M barium chloride containing 1.83 × 10⁻³ moles is:
1.83 × 10⁻³ mol × (1 L/1.50 mol) = 1.22 × 10⁻³ L = 1.22 mL
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1
Answer:
The answers to your questions are given below.
Explanation:
Data obtained from the question include:
Mass (M) = 420.0 g
Temperature change (ΔT) = 43.8 °C
Specific heat capacity (C) = 3.52 J/g °C
Heat needed (Q) =...?
The heat needed for the temperature change can be obtained by using the following formula:
Q = MCΔT
Where:
Q is the heat needed measured in joule (J).
M is the mass of substance measured in grams (g)
C is the specific heat capacity of the substance with unit J/g °C.
ΔT is the temperature change measured in degree celsius (°C).
Thus, we can calculate the heat needed to change the temperature as follow:
Q = MCΔT
Q = 420 x 3.52 x 43.8
Q = 64753.92 J
Therefore, the heat needed to cause the temperature change is 64753.92 J
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.
Remember that density refers to the "mass per unit volume" of an object.
So, if an object had a mass of 100 grams and a volume of 100 milliliters, the density would be 100 grams / 100 ml.
In the question, water on the surface of the scale would add weight, so the mass of the object that you're weighing would appear to be heavier than it really is. If that happens, you'll incorrectly assume that the density is GREATER than it really is
As an example, suppose that there was 5 ml of water on the surface of the scale. Water has a density of 1 gram per milliliter (1 g/ml) so the water would add 5 grams to the object's weight. If we use the example above, the mass of the object would seem to be 105 grams, rather than 100 grams. So, you would calculate:
density = mass / volume
density = 105 grams / 100 ml
density = 1.05 g/ml
The effect on density would be that it would erroneously appear to be greater
Hope this helps!
Good luck