Answer:
The correct options are "b" and "c". A further explanation is given below.
Explanation:
- Saturation temperature can be determined where this enough of some other solution that is incorporated like that can be absorbed by a solvent.
- The formulation is saturated at this same stage, so Ksp could be computed. As well as the solid throughout solution should continue to appear upon freezing below a certain temperature.
The other options offered aren't relevant to the situation described. So the equivalents above are the right ones.
Answer:
A = 679.2955 ppm
Explanation:
In this case, we already know that 64Cu has a half life of 12.7 hours. The expression to use to calculate the remaining solution is:
A = A₀ e^-kt
This is the expression to use. We have time, A₀, but we do not have k. This value is calculated with the following expression:
k = ln2 / t₁/₂
Replacing the given data we have:
k = ln2 / 12.7
k = 0.0546
Now, let's get the concentration of Cu:
A = 845 e^(-0.0546*4)
A = 845 e^(-0.2183)
A = 845 * 0.8039
A = 679.2955 ppm
This would be the concentration after 4 hours
<h3>
Answer:</h3>
30 miles per hour faster
<h3>
Explanation:</h3>
We are given;
- Distance that Mary drove as 525 miles
- Time she took as 7 hours
- Average speed as 75 miles per hour
We are supposed to determine how fast the average speed would be if she made the trip in 5 hours.
- We know that speed is given by dividing distance by time taken.
- In this case distance remained constant
Therefore, we can determine the speed when she took 5 hours
= 525 miles ÷ 5 hours
= 105 hours
Thus, the new speed would be 105 miles per hours
But, initial speed was 75 miles per hour
Therefore, she would travel 30 miles per hour faster to cover the journey in 5 hours.
Answer:
Here's what I get
Explanation:
1. Balanced equation
HQ⁻ + CH₃-Br ⟶ HQ-CH₃ + Br⁻
(I must use HQ because the Brainly Editor thinks the O makes a forbidden word)
2. Mechanism
HQ⁻ + CH₃-Br ⟶[HQ···CH₃···Br]⁻⟶ HQ-CH₃ + Br⁻
A C B
The hydroxide ion attacks the back side of the carbon atom in the bromomethane (A).
At the same time as the Q-H bond starts to form, the C-Br bond starts to break.
At the half-way point, we have a high-energy intermediate (C) with partially formed C-O and C-Br bonds.
As the reaction proceeds further, the Br atom drops off to form the products — methanol and bromide ion (B).
3. Energy diagram
See the diagram below.