answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
2 years ago
3

The zygote eventually becomes a(n)

Physics
1 answer:
Alisiya [41]2 years ago
4 0
The answer would be egg
You might be interested in
A solid uniform sphere of mass 1.85 kg and diameter 45.0 cm spins about an axle through its center. Starting with an angular vel
KengaRu [80]

Answer:

The net torque is 0.0372 N m.

Explanation:

A rotational body with constant angular acceleration satisfies the kinematic equation:

\omega^{2}=\omega_{0}^{2}+2\alpha\Delta\theta (1)

with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

\frac{\omega^{2}-\omega_{0}^{2}}{2\Delta\theta}=\alpha

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

\alpha=-\frac{-(15.1)^{2}}{2(114.3)}=1.00\frac{rad}{s^{2}}

The negative sign indicates the sphere is slowing down as we expected.

Now with the angular acceleration we can use Newton's second law:

\sum\overrightarrow{\tau}=I\overrightarrow{\alpha} (2)

with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:

I = \frac{2MR^{2}}{5}

With M the mass of the sphere an R its radius, then:

I = \frac{2(1.85)(\frac{0.45}{2})^{2}}{5}=0.037 kg*m^2

Then (2) is:

\sum\overrightarrow{\tau}=0.037(-1.00)=0.037 Nm

7 0
2 years ago
Read 2 more answers
A baseball pitcher throws a ball at 90.0 mi/h in the horizontal direction. How far does the ball fall vertically by the time it
Lisa [10]

Answer:

Vertical distance=  3.3803ft

Explanation:

First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:

Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h

Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h

time=  0.00012731h × (3600s/h)= 0.458316s

With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:

Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m

Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft

This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.

3 0
2 years ago
Charge q1 is distance r from a positive point charge q. charge q2=q1/3 is distance 2r from q. what is the ratio u1/u2 of their p
makvit [3.9K]
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space). 

<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>

<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
5 0
2 years ago
A conducting sphere of radius 5.0 cm carries a net charge of 7.5 µC. What is the surface charge density on the sphere?
11111nata11111 [884]

Answer:

\sigma=0.014\ C/m^2

Explanation:

Given that,

The radius of sphere, r = 5 cm = 0.05 m

Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C

We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,

\sigma=\dfrac{7.5\times 10^{-6}}{\dfrac{4}{3}\pi \times (0.05)^3}\\\\=0.014\ C/m^2

So, the surface charge density on the sphere is 0.014\ C/m^2.

7 0
2 years ago
Tyrel is learning about a certain kind of metal used to make satellites. He learns that infrared light is absorbed by the metal,
VARVARA [1.3K]

Answer: yes.

Explanation: The light that will be incidented on that metal is visible light.

It depends on 3 factors:

1. The temperature

2. The specific heat capacity of the metal

3. The thermal conductivity of the metal.

The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.

When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer. 

6 0
2 years ago
Other questions:
  • A 2-ft-thick block constructed of wood (sg = 0.6) is submerged in oil (sg = 0.8), and has a 2-ft-thick aluminum (specific weight
    13·1 answer
  • A block with mass m = 7 kg is attached to two springs with spring constants kleft = 37 N/m and kright = 48 N/m. The block is pul
    9·1 answer
  • What is the atomic number z of 73li?
    12·2 answers
  • A runner runs around the track consisting of two parallel lines 96 m long connected at the ends by two semi circles with a radiu
    9·1 answer
  • A machine is currently set to a feed rate of 5.921 inches per minute (IPM). Te machinist changes this setting to 6.088 IPM. By h
    9·2 answers
  • At a processing plant, olive oil of density 875 kg/m3 flows in a horizontal section of hose that constricts from a diameter of 3
    14·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    10·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • A parallel plate capacitor stores charge, and thus, stores energy in the form of electric potential energy. The total energy sto
    9·1 answer
  • An object begins at position x = 0 and moves one-dimensionally along the x-axis witļi a velocity v
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!