Answer:
a) 
b) 
Step-by-step explanation:
a) Lets denote
the cumulative distribution function of X. Note that for any value a between 0 and I/2, we have that
is the probability for the stick to be broken before the length a is reached following the stick from one starting point plus the probability for the stick to be broken after the length I-a from the same starting point. This means that 
b) Note that, as a consecuence of what we calculate in the previous item, X has a uniform distribution with parameter I/2, therefore, the probability density function f is
f(x) = 1/(I/2) = 2/I
Given:
Eighteen 2.5 gallon buckets are needed to fill a cistern with water.
To find:
The constant of variation.
Solution:
If y is directly proportional to x, then


Where, k is constant of variation.
In the given problem, water in cistern (w) is directly proportional to number of buckets (n).

(Capacity of each bucket is 2.5 gallons)
Therefore, the constant of variation is 2.5.
Using a table of values, the outputs of f(x) for whole numbers are 0, 1, 4, 9, 16, 25, 36, and so on. For the same input values, g(x) has outputs of 1, 2, 4, 8, 16, 32, and 64. Continuing to double the output each time results in larger outputs than those of f(x). The exponential function, g(x), has a constant multiplicative rate of change and will increase at a faster rate than the quadratic function.
(ed. just click all of them)
Answer:
£1.6
Step-by-step explanation:
£20 ÷ £2.3= 8 remainder 1.6
change= £1.6
The equation of a parabola with vertex at (h,k) is
y=a(x-h)²+k
vertex isi at (0,0)
y=a(x-0)²+0
y=a(x)²
y=ax²
find a
we see that one point is (14,-74)
x=14 and y=-74
-74=a(14²)
-74=196a
divide both sides by 196
-37/98=a
the equation is