Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>
Using a more concentrated HCl solution and Crushing the CaCO₃ into a fine powder makes the reaction to occur at a faster rate.
<u>Explanation:</u>
CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + H₂O(aq) + CO₂(g)
When calcium carbonate reacts with hydrochloric acid, it gives out carbon-dioxide in the form of bubbles and there is a formation of calcium chloride in aqueous medium.
The rate of the reaction can be increased by
- Using a more concentrated HCl solution
- Crushing the CaCO₃ into a fine powder
When concentrated acid is used instead of dilute acid then the reaction will occur at a faster rate.
When CaCO₃ is crushed into a fine powder then the surface area will increases thereby increasing the rate of the reaction.
Sorenson
Explanation:
The values used in the scale of pH and pOH are derived from a system designed by Sorenson. Søren Peter Lauritz Sørensen, a Danish chemist introduced the system of pH and pOH for describing the alkalinity and acidity of substances.
- The pH and pOH scale is logarithmic scale that ranks the acidity and bascity of compounds.
- pH is the negative logarithm of the concentration of hydrogen/hydroxonium ions in solution i.e
pH = -log₁₀{H⁺]
- pOH is the negative log of the concentration of the hydroxyl ions in a solution i.e
pOH = -log₁₀{OH⁻]
Learn more:
calculating pH: brainly.com/question/12985875
pH scale: brainly.com/question/11063271
#learnwithBrainly
Answer:
Explanation:
Cheese, Meat, dough, Sauce
Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=100 kPa
T=293 K
R=8.314472 L kPa K⁻¹ mol⁻¹
Number of moles of gas=3.43 mole
Putting all the values in the above equation,

V=83.55 L
So the volume will be 83.55 L.
83.55 L of radon gas would be in 3.43 moles at room temperature and pressure (293 K and 100 kPa).