answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
2 years ago
13

Which biomolecule is composed of five basic elements: carbon, hydrogen, oxygen, nitrogen, and phosphorus arranged into two types

of polymers, one a double-stranded molecule shaped as a double helix, the other polymer is a single-stranded molecule?
Chemistry
1 answer:
Radda [10]2 years ago
6 0
DNA is the answer for the question
You might be interested in
Find the molarity of 186.55 g of sugar (C12H22O11) in 250. mL of water.
Anna [14]

Answer:

The molarity of this sugar solution in water is 2.18 M

Explanation:

Step 1: Data given

Mass of sugar (C12H22O11) = 186.55 grams

Molar mass of C12H22O11 = 342.3 g/mol

Volume of water = 250.0 mL = 0.250 L

Step 2: Calculate moles sugar

Moles sugar = mass sugar / molar mass sugar

Moles sugar = 186.55 grams / 342.3 g/mol

Moles sugar = 0.545 moles

Step 3: Calculate molarity of the sugar solution

Molarity = moles sugar / volume of water

Molarity = 0.545 moles / 0.250 L

Molarity = 2.18 MThe molarity of this sugar solution in water is 2.18 M

6 0
2 years ago
trans-2-Butene does not exhibit a signal in the double-bond region of the spectrum (1600–1850 cm-1); however, IR spectroscopy is
spayn [35]

Answer:

The other signal that would indicate the presence of a C= C bond appears close to 3100 cm^{-1}.

Explanation:

Bands that appear above 3000 cm^{-1}  are often unsaturation diagnoses suggest. The band at 3000- 3100 cm^{-1} is characteristics for C-H stretching frequencies and normally is overlaps with the ones for alkanes because it is a band of weak intensity.

4 0
2 years ago
Which of the compounds above are strong enough acids to react almost completely with a hydroxide ion (pka of h2o = 15.74) or wit
luda_lava [24]

The compounds can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Further explanation </em></h3>

In an acid-base reaction, it can be determined whether or not a reaction occurs by knowing the value of pKa or Ka from acid and conjugate acid (acid from the reaction)

Acids and bases according to Bronsted-Lowry

Acid = donor (donor) proton (H + ion)

Base = proton (receiver) acceptor (H + ion)

If the acid gives (H +), then the remaining acid is a conjugate base because it accepts protons. Conversely, if a base receives (H +), then the base formed can release protons and is called the conjugate acid from the original base.

From this, it can be seen whether the acid in the product can give its proton to a base (or acid which has a lower Ka value) so that the reaction can go to the right to produce the product.

The step that needs to be done is to know the pKa value of the two acids (one on the left side and one on the right side of the arrow), then just determine the value of the equilibrium constant

Can be formulated:

K acid-base reaction = Ka acid on the left : K acid on the right.

or:

pK = acid pKa on the left - pKa acid on the right

K = equilibrium constant for acid-base reactions

pK = -log K;

K~=~10^{-pK}

K value> 1 indicates the reaction can take place, or the position of equilibrium to the right.

There is some data that we need to complete from the problem above, which is the pKa value of some compounds that will react, namely:

pyridinium pKa = 5.25

acetone pKa = 19.3

butan-2-one pKa = 19

Let's look at the K value of each possible reaction:

pka H₂O = 15.74, pka of H₂CO₃ = 6.37)

  • 1. C₅H₆N pyridinium

* with OH⁻

C₅H₆N + OH- ---> C₅H₅N- + H₂O

pK = pKa pyridinium - pKa H₂O

pK = 5.25 - 15.74

pK = -10.49

K~=~10^{4.9}

K values> 1 indicate the reaction can take place

* with HCO3⁻

C₅H₆N + HCO₃⁻-- ---> C₅H₅N⁻ + H₂CO₃

pK = 5.25 - 6.37

pK = -1.12

K`=~10^{1.12]

Reaction can take place

  • 2. Acetone C₃H₆O

* with OH-

C₃H₆O + OH⁻ ---> C₃H₅O- + H₂O

pK = 19.3 - 15.74

pK = 3.56

K~=~10^{ -3.56}

Reaction does not happen

* with HCO₃-

C₃H₆O + HCO₃⁻ ----> C₃H₅O⁻ + H₂CO₃

pK = 19.3 - 6.37

pK = 12.93

K`=~10 ^{-12.93}

Reaction does not happen

  • 3. butan-2-one C₄H₇O

* with OH-

C₄H₇O + OH- ---> C₄H₆O- + H₂O

pK = 19 - 15.74

pK = 3.26

K~=~10^{-3.26}

Reaction does not happen

* with HCO₃⁻

C₄H₇O + HCO₃⁻ ---> C₄H₆O⁻ + H₂CO₃

pK = 19 - 6.37

pK = 12.63

K~=~ 10^{-12.63}

Reaction does not happen

So that can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Learn more </em></h3>

the lowest ph

brainly.com/question/9875355

the concentrations at equilibrium.

brainly.com/question/8918040

the ph of a solution

brainly.com/question/9560687

Keywords : acid base reaction, the equilibrium constant

5 0
2 years ago
Read 2 more answers
The pOH of a solution is 6.0. Which statement is correct? Use p O H equals negative logarithm StartBracket upper O upper H super
Katen [24]

Answer:

The pH of the solution is 8.

Explanation:

To which options are correct, let us determine the concentration of the hydroxide ion, [OH-] and the pH of the solution. This is illustrated below:

1. The concentration of the hydroxide ion, [OH-] can be obtained as follow:

pOH = –Log [OH-]

pOH = 6

6 = –Log [OH-]

–6 = Log [OH-]

[OH-] = Antilog (–6)

[OH-] = 1x10^–6 mol/L

2. The pH of the solution can be obtained as follow:

pH + pOH = 14

pOH = 6

pH + 6 = 14

pH = 14 – 6

pH = 8.

From the calculations made above,

[OH-] = 1x10^–6 mol/L

pH = 8.

Therefore, the correct answer is:

The pH of the solution is 8

3 0
2 years ago
For which of the following properties does sodium have a larger value than rubidium? Select all that apply.
Doss [256]

Answer:

Ionization energy

Electronegativity

Explanation:

-due to its smaller ionic radius....the electron in the outter most shell tends to expierence a stronger nuclear attraction...which makes it harder to remove the electron from the sodium atom

-Rubidium has lesser ionization energy because its (i) affected by its larger ionic radius which tends to lessen the nuclear attraction ...hence making it easier to remove the electron...(ii)and also by the screening effect done by the inner shells, which also tends to lessen the nuclear attraction.

Sodium has a higher electronegativity than rubidium;

Electronegativity is the charge density of electrons in an atom...in which its high when the atomic radius is smaller...

So hence due to the sodium atomic radius being smaller...it tends to have a higher charge density than rubidium....which then gives it a higher electronegativity value

4 0
2 years ago
Other questions:
  • When the elements in Group 1 are considered in order from top to bottom, each successive element at standard pressure has
    5·1 answer
  • Ethyne (C2 H2 (g), mc032-1.jpgHf = 226.77 kJ/mol) undergoes complete combustion in the presence of oxygen to produce carbon diox
    6·2 answers
  • What mass of AgBr can be produced starting with 34.3G of NaBr? (Stoichiometry method)
    6·1 answer
  • The density of mercury is 13.6 g/cm3 . What volume (in quarts) is occupied by 100. g of Hg? (1 L = 1.06 qt)
    11·1 answer
  • 1g of a white solid is placed into a beaker of a green-colored liquid. The color of the liquid does not change, but a gas begins
    11·1 answer
  • Freon-12, CF2Cl2, which has been widely used in air conditioning systems, is considered a threat to the ozone layer in the strat
    8·2 answers
  • 1.05 Quiz: Measure Angles
    13·2 answers
  • In what type of environment would you most likely find Fish Species 1? Explain your answer.
    5·2 answers
  • 3. Scott and James work at a grocery store. After the grocery store closed, they were playing a game with a shopping cart and Sc
    6·1 answer
  • Refer to the map of "The Major North American Land Biomes" to answer the question.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!