Answer:
are present in solution.
Explanation:
Molarity of the solution = 0.210 M
Volume of the solution = 65.5 ml = 0.0655 L
Moles of aluminum iodide= n


n = 0.013755 moles of aluminum iodide
1 mole of aluminum iodide contains 3 moles of iodide ions:
Then 0.013755 moles of aluminum iodide will contain:
of iodide ions
Number of iodide ions in 0.041265 moles:

are present in solution.
Answer:
99°C
Explanation:
asking questions is Best in life of education
Because its molecules can slide around each other, a liquid<span> has the ability to flow. The resistance to such flow is called the </span>viscosity<span>. For organic liquids, as the chain increases the viscosity increases as well due to the bonding that is present. Therefore, the ranking should be as follows:
</span><span>CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3
</span><span>CH3CH2CH2CH2CH2CH2CH2CH3
</span><span>CH3CH2CH2CH2CH2CH3 </span>
Answer:
it would definitely be wienerballs1977
Explanation:
fossil fuels x (3x1017kJ/yr) equals out to be wienerballs1977.
thx for the challenge !
Answer:
0.047 %
Explanation:
Step 1: Given data
- Partial pressure of ozone (pO₃): 0.33 torr
- Total pressure of air (P): 695 torr
Step 2: Calculate the %v/v of ozone in the air
Air is a mixture of gases. We can find the %v/v of ozone (a component) in the air (mixture) using the following expression.
<em>%v/v = pO₃/P × 100%</em>
%v/v = 0.33 torr/695 torr × 100%
%v/v = 0.047 %