-5abc+10d will be the answer.
Given:
On the first day, she drove 650 miles in 10 hours.
On the second day, she got a later start and drove 540 miles in 8 hours.
To find:
Difference between average speed of second day and first day.
Solution:
We know that,

On the first day, she drove 650 miles in 10 hours. So, the average speed is


So, the average speed on first day is 65 miles per hour.
On the second day, she got a later start and drove 540 miles in 8 hours.


So, the average speed on second day is 67.5 miles per hour.
Difference between average speed is

Therefore, the average speed on the second day is 2.5 miles per hour is faster than first day.
It would be: k+3 = 10
subtracting 3 from both sides,
k+3-3 = 10-3
k=7
We are given the function –2x – 4 + 5x = 8 and is asked in the problem to solve for the variable x in the function. In this case, we can first group the like terms and put them in their corresponding sides:
-2x + 5x =8+4
Then, do the necessary operations.
3x = 12
x = 4.
The variable x has a value of 4.
Step 1
<u>Find the measure of angle x</u>
we know that
If ray NP bisects <MNQ
then
m<MNQ=m<PNM+m<PNQ ------> equation A
and
m<PNM=m<PNQ -------> equation B
we have that
m<MNQ=(8x+12)°
m<PNQ=78°
so
substitute in equation A
(8x+12)=78+78-------> 8x+12=156------> 8x=156-12
8x=144------> x=18°
Step 2
<u>Find the measure of angle y</u>
we have
m<PNM=(3y-9)°
m<PNM=78°
so
3y-9=78------> 3y=87------> y=29°
therefore
<u>the answer is</u>
the measure of x is 18° and the measure of y is 29°