A simple electromagnet consisting of a coil of wire wrapped around an iron core. <u><em>A core of ferromagnetic material like iron serves to increase the magnetic field created.</em></u> The strength of magnetic field generated is proportional to the amount of current through the winding.
your answer is b :)
I LOVE YOUR PROFILE PICTURE!!!
First, we write the SI prefixed. The SI unit for distance is meters.
Kilo = 10³
Mega = 10⁶
Giga = 10⁹
Terra = 10¹²
Because our value has ten to the power of 11, we will use the closest and lowest power prefix, which is giga.
1.5 x 10¹¹ / 10⁹
= 1.5 x 10² Gm or 150 Gm
Writing in kilometers, we simply repeat the procedure except we divide by 10³ this time.
1.5 x 10¹¹ / 10³
= 1.5 x 10⁸ km
<em>To determine the y component of velocity of a projectile </em><u><em>sine </em></u><em>operation is performed on the angle of launch.</em>
<u>Answer:</u> <em>sine</em>
<u>Explanation:</u>
Thus 
The initial velocity u can be resolved along two directions.
Along the X direction initial velocity = u cos θ
Along y direction initial velocity= u sin θ
From the equation of motion 
Thus velocity along x direction
=u cos θ
Velocity along y direction
= u sinθ -gt
Sign of g is negative.
Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.
Answer:
P₁ = 2.3506 10⁵ Pa
Explanation:
For this exercise we use Bernoulli's equation and continuity, where point 1 is in the hose and point 2 in the nozzle
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
A₁ v₁ = A₂ v₂
Let's look for the areas
r₁ = d₁ / 2 = 2.25 / 2 = 1,125 cm
r₂ = d₂ / 2 = 0.2 / 2 = 0.100 cm
A₁ = π r₁²
A₁ = π 1.125²
A₁ = 3,976 cm²
A₂ = π r₂²
A₂ = π 0.1²
A₂ = 0.0452 cm²
Now with the continuity equation we can look for the speed of water inside the hose
v₁ = v₂ A₂ / A₁
v₁ = 11.2 0.0452 / 3.976
v₁ = 0.1273 m / s
Now we can use Bernoulli's equation, pa pressure at the nozzle is the air pressure (P₂ = Patm) the hose must be on the floor so the height is zero (y₁ = 0)
P₁ + ½ ρ v₁² = Patm + ½ ρ v₂² + ρ g y₂
P₁ = Patm + ½ ρ (v₂² - v₁²) + ρ g y₂
Let's calculate
P₁ = 1.013 10⁵ + ½ 1000 (11.2² - 0.1273²) + 1000 9.8 7.25
P₁ = 1.013 10⁵ + 6.271 10⁴ + 7.105 10⁴
P₁ = 2.3506 10⁵ Pa