Answer:
A) F = - 8.5 10² N, B) I = 21 N s
Explanation:
A) We can solve this problem using the relationship of momentum and momentum
I = Δp
in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction
v₀ = 8.50 m / s
v_f = -8.50 m / s
F t = m v_f -m v₀
F =
let's calculate
F =
F = - 8.5 10² N
B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations
v² = v₀² - 2g (y- y₀)
as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0
v =
calculate
v =
v = 14 m / s
to calculate the momentum we use
I = Δp
I = m v_f - mv₀
when it hits the ground its speed drops to zero
we substitute
I = 1.50 (0-14)
I = -21 N s
the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is
I = 21 N s
The answer would be C. It will decrease with descent. Hope this helps!
Answer:
a)
b)
Explanation:
Given that
v(t) = 5 t i + t² j - 2 t³ k
We know that acceleration a is given as



Therefore the acceleration function a will be

The acceleration at t = 2 s
a= 5 i + 2 x 2 j - 6 x 2² k m/s²
a=5 i + 4 j -24 k m/s²
The magnitude of the acceleration will be

a= 24.83 m/s²
The direction of the acceleration a is given as

a)
b)
#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid
Answer with Explanation:
We are given that
Radius of solid core wire=r=2.28 mm=

Radius of each strand of thin wire=r'=0.456 mm=
Current density of each wire=
a.Area =
Where 
Using the formula
Cross section area of copper wire has solid core =
Current density =
Using the formula


Total number of strands=19
Area of strand wire=




b.Resistivity of copper wire=
Length of each wire =6.25 m
Resistance, R=
Using the formula
Resistance of solid core wire=
Resistance of strand wire=