<u>Given</u>:
Given that the regular decagon has sides that are 8 cm long.
We need to determine the area of the regular decagon.
<u>Area of the regular decagon:</u>
The area of the regular decagon can be determined using the formula,

where s is the length of the side and n is the number of sides.
Substituting s = 8 and n = 10, we get;

Simplifying, we get;




Rounding off to the nearest whole number, we get;

Thus, the area of the regular decagon is 642 cm²
Hence, Option B is the correct answer.
Answer:
which one do you need help on
A bell ringing is the answer
The first inequality has solution
4p > -8 . . . . . . subtract 1
p > -2 . . . . . . . divide by 4
This is graphed as an open dot at -2, with shading to the right.
Neither inequality symbol includes "or equal to", so both dots are open dots. The appropriate choice is the first one:
a number line with open circles at negative 2 and 5 with shading in between
Jake spent a total of 70 cents.
b = black-and-white = 8 cents
c = color = 15 cents
70 = 8b + 15c
he made a total of 7 copies
b + c = 7
system of equation:
70 = 8b + 15c
b + c = 7
--------------------------
b + c = 7
b + c (-c) = 7 (-c)
b = 7 - c
plug in 7 - c for b
70 = 8(7 - c) + 15c
Distribute the 8 to both 7 and - c (distributive property)
70 = 56 - 8c + 15c
Simplify like terms
70 = 56 - 8c + 15c
70 = 56 + 7c
Isolate the c, do the opposite of PEMDAS: Subtract 56 from both sides
70 (-56) = 56 (-56) + 7c
14 = 7c
divide 7 from both sides to isolate the c
14 = 7c
14/7 = 7c/7
c = 14/7
c = 2
c = 2
---------------
Now that you know what c equals (c = 2), plug in 2 for c in one of the equations.
b + c = 7
c = 2
<em>b + (2) = 7
</em><em />Find b by isolating it. subtract 2 from both sides
b + 2 = 7
b + 2 (-2) = 7 (-2)
b = 7 - 2
b = 5
Jake made 5 black-and-white copies, and 2 color copies
hope this helps