Answer:
52 amu
Explanation:
To get the relative atomic mass of the element, we need to take into consideration, the atomic masses of the different isotopes and their relative abundances. We simply multiply the percentages with the masses. This can be obtained as follows:
[89/100 * 52] + [8/100 * 49] + [3/100 * 50]
46.28 + 3.92 + 1.5 =51.7 amu
The approximate atomic mass of element x is 52 amu
Answer: Reaction 1 is non spontaneous.
Explanation:
According to Gibb's equation:

= Gibbs free energy
= enthalpy change
= entropy change
T = temperature in Kelvin
When
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
For the given reaction 1:

As for the reaction 1 , the value of Gibbs free energy is positive and thus the reaction 1 is non spontaneous.
Given:
magnesium = 0.941 gram piece
Magnesium oxide= 1.560 grams
Formula:
(magnesium / magnesium oxide) x 100 = % Mg
100% - % Mg = percent composition of each element
Solution:
(0.941g Mg) / (1.560g MgO)
= 0.603
= 60.3% Mg
100% - 60.3%
= 39.7%
39.7% is the percentage composition of each element.
Answer:

Explanation:
First of all we need to find the amount of atoms per volume (m³). We can do this using the density and the molar mass.

Now, the fraction of vacancies is equal to the N(v)/N ratio.
- N(v) is the number of vacancies

- N is the number of atoms per volume calculated above.
Therefore:
The fraction of vacancies at 600 °C will be:

I hope it helps you!
Carbon is what you breathe out and chloride is like somewhere in your immune system