(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
Answer:
Miranda has been to the store 9 times.
Savannah has gone to the store 7 times.
Total each spent = $ 63 (approx.)
1)volume of the pipeline
The pipeline is a cylinder, therefore;
Volume (cylinder)=πr²h
r=radius
h=height of the cylinder
diameter=6 in*(1 ft / 12 in)=0.5 ft
raius=diameter / 2=0.5 ft / 2=0.25 ft.
height=5280 ft
Volume (pipeline)=π(0.25 ft)²(5280 ft)=330π ft³≈1036.73 ft³.
2) we calculate the number of barrel
1 mile of oil in this pipeline is 330π ft³ of oil.
1 barrel of crude------------------5.61 ft³
x----------------------------------330π ft³
x=(1 barrel*330π ft³) / 5.61 ft³=184.8 barrels
3) we calculate the price.
1 barrel---------------$100
184.8 barrels---------- x
x=(184.8 barrels * $100) / 1 barrel=$18,480
Solution: ≈$18,480