answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
1 year ago
5

A student throws a 0.22 kg rock horizontally at 20.0 m/s from 10.0 m above the ground. Find the initial kinetic energy of the ro

ck.
Physics
1 answer:
LekaFEV [45]1 year ago
6 0

Answer:

44J

Explanation:

Given parameters:

Mass of rock  = 0.22kg

Initial velocity  = 20m/s

Distance moved  = 10m

Unknown:

Initial kinetic energy of the rock  = ?

Solution:

To solve this problem, we need to understand that kinetic energy is the energy due to the motion of a body.

It is mathematically expressed as;

     Kinetic energy  = \frac{1}{2} m v²

m is the mass

v is the velocity

   Kinetic energy  =  \frac{1}{2} x 0.22 x 20²   = 44J

You might be interested in
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
At room temperature, a typical person loses energy to the surroundings at the rate of 62 W. If this energy loss has to be made u
Alex_Xolod [135]

To solve this problem it is necessary to use the given proportions of power and energy, as well as the energy conversion factor in Jules to Calories.

The power is defined as the amount of energy lost per second and whose unit is Watt. Therefore the energy loss rate given in seconds was

P = \frac{E}{t} \rightarrow E= Energy, t = time

P = 62W = 62 \frac{J}{s}

The rate of energy loss per day would then be,

P = 62\frac{J}{s} (\frac{86400s}{1day})

P = 5356800 \frac{J}{day}

That is to say that Energy in Jules per lost day is 5356800J

By definition we know that 1KCal = 4.184*10^{6}J

In this way the energy in Cal is,

E = 5356800J \frac{1KCal}{4.184*10^{6}J}

E = 1279.694 KCal

The number of kilocalories (food calories) must be 1279.694 KCal

4 0
2 years ago
The connections of many simple pieces in the brain is evidence of the:
olga55 [171]

Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity

6 0
2 years ago
Read 2 more answers
A stiff wire 50.0 cm long is bent at a right angle in the middle. One section lies along the z axis and the other is along the l
zloy xaker [14]

Answer:

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis

Explanation:

The stiff wire 50.0cm long bent at a right angle in the middle

One section lies along the z axis and the other is along the line y=2x in the xy plane

\frac{y}{x} = 2

tan θ = 2

Therefore,

slope m = tan θ = y / x

\theta=\tan^-^1(2)=63.4^0

Then length of each section is 25.0cm

so, length vector of the wire is

\hat I= (-25.0)\hat k +(25.0) \cos 63.4^0 \hati +(25.0) \sin63.4^0 \hatJ\\\\\hat I = (11.2) \hat i + (22.4) \hat j - (23.0) \hat k

And magnetic field is B = (0.318T)i

Therefore,

\bar F = \hat I (\bar l \times \bar B)

\bar F = (20.0)[(0.112m)i +(0.224m)j-(0.250m)k \times 90.318T)i]

= (20.0)(i(0)+j(-0.250)(0.318T)+k[0-(0.224m)(0.318T)]\\\\=(20.0)(-0.250)(0.318)j-(20.0)(0.224)(0.318T)\\\\=-(1.59N)j-(1.425N)k

Magnitude of the force is

F = \sqrt{(-1.59N)^2+(-1.425N)^2\\} \\F = 2.135N

Direction is

\alpha = \tan^-^1(\frac{-1.425N}{-1.59N} )\\\\= 41.8^0

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis

5 0
2 years ago
Read 2 more answers
Other questions:
  • Which pair of sentences is describing the same velocity? A car is parked. A car is moving in circles. A bus drives 40 miles per
    9·2 answers
  • Two disks with the same rotational inertia i are spinning about the same frictionless shaft, with the same angular speed ω, but
    8·1 answer
  • What is the direction of the current in the loop as the loop rotates clockwise through the magnetic field from as viewed from th
    14·2 answers
  • In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
    12·1 answer
  • A box sliding on a horizontal frictionless surface encounters a spring attached to a rigid wall and compresses the spring by a c
    9·1 answer
  • A 91.5 kg football player running east at 2.73 m/s tackles a 63.5 kg player running east at 3.09 m/s. what is their velocity aft
    15·1 answer
  • the base of a rectangular vessel measure 10m by 18cm. water is poured into a depth of 4cm. (a) what is the pressure on the base?
    10·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • Many kinds of analysis in the physical sciences are helped by identifying quantities that are constant. It is usual to begin by
    5·1 answer
  • An erect object is placed on the central axis of a thin lens, further from the lens than the magnitude of its focal length. The
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!