Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 
Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as



Answer:
a) I = 13.04 A
b) R = 8.82 ohms
c) 1291.87 kilocalories are generated an hour.
Explanation:
let P be the power of the heater, V be the voltage of the heater, I be the current of the heater, R be the resistance.
a) we know that:
P = I×V
I = P/V
= (1500)/(115)
= 13.04 A
Therefore, the current of the heater is 13.04 A
b) we now have voltage and current, according to Ohm's law:
R = V/I
= (115)/(13.04)
= 8.82 ohms
Therefore, the resistance of the heating coil is 8.82 ohms.
c) the number of kilocalories generated in one hour by the heater is just the energy the heater produces in one hour which is given by:
E = P×t
= (1500)(1×60×60)
= 5400000 J
since 1 calorie = 4.81 J
1 kilocalorie = 0.001 calories
E = 5400000/4.18 ≈ 1291866.029 calories ≈1291.87 kilocalories
Therefore, 1291.87 kilocalories are produced/generated in one hour.
Answer:
The magnitudes of the net magnetic fields at points A and B is 2.66 x
T
Explanation:
Given information :
The current of each wires, I = 4.7 A
dH = 0.19 m
dV = 0.41 m
The magnetic of straight-current wire :
B= μ
I/2πr
where
B = magnetic field (T)
μ
= 1.26 x
(N/
)
I = Current (A)
r = radius (m)
the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,
BH = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.19)
= 4.96 x
T
BV = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.41)
= 2.3 x
T
hence,
the net magnetic field = BH - BV
= 4.96 x
- 2.3 x 
= 2.66 x
T
A) f = 1.8 rev/s = 2 Hz
<span>T = 1 / f = 0.55s
B) not really sure..srry
C) </span><span>T = 2 pi √ ( L / g ) </span>
<span>0.57 = 2 x 3.14 x √ ( 0.2 / g )
</span><span>
g = 25.5 m/s²
</span>
Hope this helps a little at least.. :)