Answer:
(B) If the sampling procedure were repeated many times, 95% of the resulting confidence intervals would contain the population mean systolic blood pressure.
Step-by-step explanation:
A confidence interval of 95% means that there is a 95% certainty that for a given sample, the population mean will be within the confidence interval estimated.
This is the same as saying that if he sampling procedure were repeated many times, 95% of the time the population mean would be contained in the resulting confidence interval.
Therefore, the answer is B)
From the given function modeling the height of the ball:
f(x)=-0.2x^2+1.4x+7
A] The maximum height of the ball will be given by:
At max height f'(x)=0
from f(x),
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
thus the maximum height would be:
f(3.5)=-0.2(3.5)^2+1.4(3.5)+7
f(3.5)=9.45 ft
b]
How far from where the ball was thrown did this occur:
from (a), we see that at maximum height f'(x)=0
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
This implies that it occurred 3.5 ft from where the ball was thrown.
c] How far does the ball travel horizontally?
f(x)=-0.2x^2+1.4x+7
evaluationg the expression when f(x)=0 we get:
0=-0.2x^2+1.4x+7
Using quadratic equation formula:
x=-3.37386 or x=10.3739
We leave out the negative and take the positive answer. Hence the answer 10.3739 ft horizontally.
Answer:
90 beats per minute
Step-by-step explanation:
By looking at the graph, we see that exactly at second 6, the 9th beat occurs. We can take that to beats/min by multiplying that relation by 10 (since there are ten 6sec in one minute).
9beats every 6sec * 10 = 90beats/min
To solve this, we are going to use the compound interest formula:

where

is the final amount after

years

is the initial investment

is the interest rate in decimal form

is the number of times the interest is compounded per year
For the first 4 years we know that:

,

,

, and since the problem is not specifying how often the interest is communed, we are going to assume it is compounded annually; therefore,

. Lest replace those values in our formula:




Now, for the next 6 years the intial investment will be the final amount from our previous step, so

. We also know that:

,

, and

. Lets replace those values in our formula one more time:




We can conclude that Collin will have <span>£3691.41 in his account after 10 years.</span>