Answer and Step-by-step explanation:
Data provided in the question
Mean = 1.1 hours per call =
R = Mean rate = 1.6 per eight hour day
=
= 5 per day
Based on the above information
a. The average number of customers is


= 151
b. The system utilization is

= 
= 0.32
c. The amount of time required is
= 1 - system utilization
= 1 - 0.32
= 0.68
And, there is 8 hours per day
So, it would be
= 
= 5.44 hours
d. Now the probability of two or more customers is

= 0.1024
Therefore we simply applied the above formulas
Answer:
Hypotheses:
H0: There is no difference in the distribution of current sales.
H1: There is a difference in the distribution of current sales.
Enter the test statistic - round to 4 decimal places. 23.0951
Enter the p-value - round to 4 decimal places. 0.0003
Can it be concluded that there is a statistically significant difference in the distribution of sales?
Yes
please mark me brainliest!
Answer:
30-100/1000*120
Step-by-step explanation:
Source: Khan Academy
Euclidean geometry, is simply plane and solid geometry. It is named after the Greek mathematician, Euclid, when he proposed his five postulates which serve as basis of drawing plane and solid figures. So, in a nutshell, a triangle in Euclidean geometry is a two-dimensional figure composed of three sides and whose interior angles sum up to 180°. A triangle in spherical geometry, on the other hand, is a triangle formed by three arcs. Thus, it is three-dimensional, and the interior angles sum up to more than 180°. The difference is shown in the attached picture.
Answer:
The number of textbooks of each type were sold is <u>134 math </u>and <u>268 psychology </u>books.
Step-by-step explanation:
Given:
Total number of math and psychology textbooks sold in a week is 402.
Now, let the number of math textbooks sold be
.
And, the number of psychology textbooks be
.
According to question:


Dividing both sides by 3 we get:

So, total number of math textbooks were 134 .
And, total number of psychology textbooks were 
.
Therefore, the number of textbooks of each type were sold is 134 math and 268 psychology books.