<span>Three powers with whole number bases that have values greater than 120 and less than 130 are:
</span>11² = 11 x 11 = 121
<span>5³ = 5 x 5 x 5 =125 </span>
<span>2⁷ = 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128
</span>
1st Avenue would be more difficult because it’s rise and run is for every one foot forward it is 3 feet up. Meanwhile avenue 16th would start at (3,1) and the rise and run would be for every 3 feet it would go up 1 foot.
Answer:
The percentage increase in the cost of Boris car insurance cost is 249%
Step-by-step explanation:
In this question, we want to calculate the percentage increase in the cost of car insurance paid by Boris
Mathematically, to calculate this percentage increase, we shall need to make use of a mathematical formula.
Mathematically, the percentage increase would be;
{(new value paid-old value paid)/old value paid} * 100%
From the question, we can identify that the old value paid is £256 while the new value paid is £894
Thus, the percentage increase would be ;
(894-256)/256 * 100% = 638/256 * 100 = 2.4921875 * 100 = 249.21875 which is 249% increase to the nearest whole percentage
Answer:
The image of
through T is ![\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We know that
→
is a linear transformation that maps
into
⇒

And also maps
into
⇒

We need to find the image of the vector ![\left[\begin{array}{c}4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D)
We know that exists a matrix A from
(because of how T was defined) such that :
for all x ∈ 
We can find the matrix A by applying T to a base of the domain (
).
Notice that we have that data :
{
}
Being
the cannonic base of 
The following step is to put the images from the vectors of the base into the columns of the new matrix A :
(Data of the problem)
(Data of the problem)
Writing the matrix A :
![A=\left[\begin{array}{cc}4&-2\\5&7\\\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C5%267%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now with the matrix A we can find the image of
such as :
⇒
![T(\left[\begin{array}{c}4&-4\end{array}\right])=\left[\begin{array}{cc}4&-2\\5&7\\\end{array}\right]\left[\begin{array}{c}4&-4\end{array}\right]=\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=T%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-2%5C%5C5%267%5C%5C%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%26-4%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
We found out that the image of
through T is the vector ![\left[\begin{array}{c}24&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D24%26-8%5Cend%7Barray%7D%5Cright%5D)
Answer:
that is the ten thousands place
Step-by-step explanation: