First we need to identify if the data is qualitative or quantitative.
The data is average number of people living in the homes.
Qualitative data as its name indicates is an attribute or characteristic. It can not be measured e.g color. Quantitative data is such a data which can be counted or measured.
Since the average number of people can be counted and measured, the data is Quantitative.
In an observational study the individuals are observed. In the given case, Kira did not observed the individuals to gather the data, rather she used an Online resource to gather the data.
Therefore, the correct answer will be:
Kira used published data that is quantitative.
<span>83.03 acres.
To solve this, first calculate how many square feet that central park covers. Just multiply its length and width. So
1.37x10^4 * 2.64x10^2 = 3.6168x10^6
Now divide its area in square feet by the number of square feet in an acre.
3.6168x10^6 / 4.356x10^4 = 8.303x10^1 = 83.03</span>
Answer:
3.54% probability of observing at most two defective homes out of a random sample of 20
Step-by-step explanation:
For each house that this developer constructs, there are only two possible outcomes. Either there are some major defect that will require substantial repairs, or there is not. The probability of a house having some major defect that will require substantial repairs is independent of other houses. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
30% of the houses this developer constructs have some major defect that will require substantial repairs.
This means that 
If the allegation is correct, what is the probability of observing at most two defective homes out of a random sample of 20
This is
when n = 20. So






3.54% probability of observing at most two defective homes out of a random sample of 20
5,040 ways
He has 7 choices to pick his first card, 6 choices for his second, and so on. Multiply the number of choices to get the answer.