Because he was such a good ruler
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).
Answer:
1627190
Step-by-step explanation:
(see attached for reference)
Given the number 1627187, we can see that the number in the tens place is the number 8.
How we round this depends on the number immediately to the right of this number. (i.e the digit in the ones place)
Case 1: If the digit in the ones place is less less than 5, then the number in the tens place remains the same and replace all the digits to its right with zeros
Case 2: If the digit in the ones places is 5 or greater, then we increase the digit in the tens place and replace all the digits to its right with zeros.
In our case, the digit in the ones places is 7, this greater than 5, hence according to Case 2 above, we increase the digit in the tens place by one (from 8 to 9) and replace all the digits to its right by zeros giving us:
1627190