Answer:
160m/s
Step-by-step explanation:
The object can hit the ground when t = a; meaning that s(a) = s(t) = 0
So, 0 = -16a² + 400
16a² = 400
a² = 25
a = √25
a = 5 (positive 5 only because that's the only physical solution)
The instantaneous velocity is
v(a) = lim(t->a) [s(t) - s(a)]/[t-a)
Where s(t) = -16t² + 400
and s(a) = -16a² + 400
v(a) = Lim(t->a) [-16t² + 400 + 16a² - 400]/(t-a)
v(a) = Lim(t->a) (-16t² + 16a²)/(t-a)
v(a) = lim (t->a) -16(t² - a²)(t-a)
v(a) = -16lim t->a (t²-a²)(t-a)
v(a) = -16lim t->a (t-a)(t+a)/(t-a)
v(a) = -16lim t->a (t+a)
But a = t
So, we have
v(a) = -16lim t->a 2a
v(a) = -32lim t->a (a)
v(a) = -32 * 5
v(a) = -160
Velocity = 160m/s
Well we set the perimeter to 120 feet.
This means that 2x+2y=120
Now we know the area of a rectangle is xy so we have to solve for both x and y in the perimeter equation.
2x=120-2y
x=60-y
2y=120-2x
y=60-x
Now we plug these values into our area equation A=xy to get:
A=(60-y)(60-x)
Answer:
(a) = 40%
(b) = 28%
(c) Expected value = $222,500
Standard deviation = $7,216.88
Step-by-step explanation:
This is a normal distribution with a = 210,000 and b =235,000
(a) The probability that he will get at least $225,000 for the house is:

(b)The probability he will get less than $217,000 is:

(c) The expected value (E) and the standard deviation (S) are:

The five digit number, 55,220 contains to 5's and two 2's. The 5's are in the ten thousand and one thousand columns. This means that one five represents 50,000 and the second represents 5, 000. The two's are in the hundreds and tens columns meaning one 2 represents 200 and the other 2 represents 20. In a direct comparison of these numbers the 5's equal 55,000 and the 2's equal 220.