answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
2 years ago
11

The ratio of Melanie's allowance to Jacob's allowance is 4.1 to 20.5. If Jacob gets $5.00, how much allowance does Melanie get?

Mathematics
2 answers:
BartSMP [9]2 years ago
6 0

If Melanie get's 4.10$, then Jacob get's 20.50$.

We can divide to get the unit rate:

20.50 ÷ 4.10 = 5

This means that if Jacob gets 5$, then Melanie will get 1$.

So in this case, Melanie get's 1$.

solniwko [45]2 years ago
4 0

Answer:

Its 1.000$

Step-by-step explanation:

You might be interested in
The Hernandez family orders 3 large pizzas. They cut the pizzas so that each pizza has the same number of slices, giving them a
Anvisha [2.4K]

Answer:

<h2>c</h2>

Step-by-step explanation:

i did it

5 0
2 years ago
Read 2 more answers
Tyrone paid $234.33 for a new watch, after tax, and the tax rate is 7%. What was the original price of the watch?
nevsk [136]
The cost of the watch originally cost $1,640.31
6 0
1 year ago
Solve the recurrence relation: hn = 5hn−1 − 6hn−2 − 4hn−3 + 8hn−4 with initial values h0 = 0, h1 = 1, h2 = 1, and h3 = 2 using (
musickatia [10]
(a) Suppose h_n=r^n is a solution for this recurrence, with r\neq0. Then

r^n=5r^{n-1}-6r^{n-2}-4r^{n-3}+8r^{n-4}
\implies1=\dfrac5r-\dfrac6{r^2}-\dfrac4{r^3}+\dfrac8{r^4}
\implies r^4-5r^3+6r^2+4r-8=0
\implies (r-2)^3(r+1)=0\implies r=2,r=-1

So we expect a general solution of the form

h_n=c_1(-1)^n+(c_2+c_3n+c_4n^2)2^n

With h_0=0,h_1=1,h_2=1,h_3=2, we get four equations in four unknowns:

\begin{cases}c_1+c_2=0\\-c_1+2c_2+2c_3+2c_4=1\\c_1+4c_2+8c_3+16c_4=1\\-c_1+8c_2+24c_3+72c_4=2\end{cases}\implies c_1=-\dfrac8{27},c_2=\dfrac8{27},c_3=\dfrac7{72},c_4=-\dfrac1{24}

So the particular solution to the recurrence is

h_n=-\dfrac8{27}(-1)^n+\left(\dfrac8{27}+\dfrac{7n}{72}-\dfrac{n^2}{24}\right)2^n

(b) Let G(x)=\displaystyle\sum_{n\ge0}h_nx^n be the generating function for h_n. Multiply both sides of the recurrence by x^n and sum over all n\ge4.

\displaystyle\sum_{n\ge4}h_nx^n=5\sum_{n\ge4}h_{n-1}x^n-6\sum_{n\ge4}h_{n-2}x^n-4\sum_{n\ge4}h_{n-3}x^n+8\sum_{n\ge4}h_{n-4}x^n
\displaystyle\sum_{n\ge4}h_nx^n=5x\sum_{n\ge3}h_nx^n-6x^2\sum_{n\ge2}h_nx^n-4x^3\sum_{n\ge1}h_nx^n+8x^4\sum_{n\ge0}h_nx^n
G(x)-h_0-h_1x-h_2x^2-h_3x^3=5x(G(x)-h_0-h_1x-h_2x^2)-6x^2(G(x)-h_0-h_1x)-4x^3(G(x)-h_0)+8x^4G(x)
G(x)-x-x^2-2x^3=5x(G(x)-x-x^2)-6x^2(G(x)-x)-4x^3G(x)+8x^4G(x)
(1-5x+6x^2+4x^3-8x^4)G(x)=x-4x^2+3x^3
G(x)=\dfrac{x-4x^2+3x^3}{1-5x+6x^2+4x^3-8x^4}
G(x)=\dfrac{17}{108}\dfrac1{1-2x}+\dfrac29\dfrac1{(1-2x)^2}-\dfrac1{12}\dfrac1{(1-2x)^3}-\dfrac8{27}\dfrac1{1+x}

From here you would write each term as a power series (easy enough, since they're all geometric or derived from a geometric series), combine the series into one, and the solution to the recurrence will be the coefficient of x^n, ideally matching the solution found in part (a).
3 0
2 years ago
Victor fue al mercado para comprar manzanas, naranjas y platanos; las naranjas costaron el doble de lo 1ue pago por las manzanas
Thepotemich [5.8K]

Answer:

El precio de las manzanas = 27 pesos

El precio de las naranjas = 54 pesos

El precio de las bananas = 19 pesos

Step-by-step explanation:

Los parámetros dados son;

El monto total gastado = 100 pesos

Sea el precio de las naranjas = x

Sea el precio de las manzanas = y

Sea el precio de los plátanos = z

La cantidad pagada por las naranjas = 2 · y = x

La cantidad pagada por los plátanos = y - 8 = z

Por lo tanto, tenemos;

La cantidad total gastada = La cantidad pagada por las naranjas + La cantidad pagada por las bananas + La cantidad pagada por las manzanas

∴ El monto total gastado = 100 pesos = 2 · y + y - 8 + y

100 = 4 · años - 8

4 · y = 100 + 8 = 108

y = 108/4 = 27

y = 27

De

z = y - 8 tenemos;

z = 27 - 8 = 19

De 2 · y = x, tenemos;

2 × 27 = x

x = 54

Por lo tanto;

El precio de las naranjas = 54 pesos

El precio de las manzanas = 27 pesos

El precio de los plátanos = 19 pesos.

5 0
2 years ago
How many marbles, each with a volume of 36 cubic centimeters, are needed to fill in a cylindrical vase with a radius of 6 centim
ANEK [815]
The volume of a cylinder can be found using the formula:

π r² h, 

where r is the radius of the circular base and h is the height of the cylinder.

If we plug in the measurements of the cylinder, we get:

π (6²) (28)

When this is simplified, we get that the volume of the cylinder is:

1008π cubic cm

Thus, if each marble has a volume of 36π cubic cm, then to find how many marbles will fit into the vase we must divide the vases total volume by the volume of each marble.

1008π / 36π = 28

Therefore, the answer is D. 28 marbles
7 0
2 years ago
Read 2 more answers
Other questions:
  • Tanya’s rotation maps point K(24, –15) to K’(–15, –24). Which describes the rotation?
    5·2 answers
  • What is the domain of the function graphed below?
    8·2 answers
  • A trapezoid has base lengths of 8 yards and 4 yards. If the height of the figure is 3 yards, what is the area? 36 square yards 9
    9·1 answer
  • Tai wrote 2 patterns. then she made the corresponding numbers into ordered pairs and graphed them below.
    15·2 answers
  • A bus drives 3 1/2 hours at an average speed of 56mph how far does the bus drive?
    8·1 answer
  • A hackberry tree has roots that reach a depth of
    14·1 answer
  • 9. Abby walked 3 km west. Then she walked
    14·1 answer
  • In 25 years, a bond with a 4.75% annual interest rate earned $2,375 as interest. What was the principal amount of the bond?
    6·2 answers
  • A bridge connecting two cities separated by a lake has a length of 5.651 mi.
    14·1 answer
  • Anna found a piece of sediment with a diameter of 0.977 millimeters. Write the size of Anna’s sample in expanded form without ex
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!