answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
2 years ago
4

The wavelength of the characteristic, bright yellow-orange flame test color of sodium is 590 nm. calculate the average energy (?

e associated with this atomic emission line.
Physics
1 answer:
Nesterboy [21]2 years ago
5 0
The energy of a photon or a light is calculated from the product of the Planck's constant and the frequency of the light. We can calculate the frequency from the wavelength since they are related. We do as follows:

E = hv

where h is Plank's constant (6.63× 10^-34<span> m^</span>2<span> kg / s</span>)
             v is frequency and equal to speed of light/wavelength (c/w)

We can rewrite energy as follows:

E = hc/w = 6.63× 10^-34 (3x10^8) / 590x10^-9
E= 3.37x10^-19 J
You might be interested in
Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m ea
madreJ [45]
In order to answer this exercise you need to use the formulas

 S = Vo*t + (1/2)*a*t^2

Vf = Vo + at

The data will be given as

Vf = final velocity = ?

Vo = initial velocity = 1.4 m/s

a = acceleration = 0.20 m/s^2

s = displacement = 100m

And now you do the following:

100 = 1.4t + (1/2)*0.2*t^2

t = 25.388s

and

Vf = 1.4 + 0.2(25.388)

Vf = 6.5 m/s

So the answer you are looking for is 6.5 m/s
7 0
2 years ago
Read 2 more answers
A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
Cloud [144]

Remember the headline:  ENERGY IS NEVER CREATED OR DESTROYED

The amount of energy before and after are always equal.  All we ever do with energy is move it around from one place to another.

a). A crane can't create energy.  Lifting the same rock in 20 different ways always takes the <u><em>same amount of work</em></u>.  It doesn't matter whether one person picks the rock straight up, or 50 people get around it and lift it, or roll it up a ramp, or lift it with 16 pulleys and a mile of rope, or use a giant steam crane.

You want to lift a 2200N weight up 25m, you're going to have to supply

(2200N) x (25m) = <em>55,000 Joules</em> of work.

c). YOU put out 55,000 Joules of energy.  It had to GO someplace. Where is it now ? ===>  It's the potential energy the rock has now, from being 25m higher than it was before.  That <em>55,000 Joules</em> is NOW the potential energy  of the rock.

No energy was created or destroyed.  It just got moved around.  

55,000 Joules of energy began as nuclear energy in the core of the sun. Solar radiation carried it to the Earth. Plants absorbed it, and stored it as chemical energy.  You ... or a cow that you ate later ... ate the plants and took the chemical energy.  One way or the other, the chemical energy got stored in your blood and fat.  When you needed to put it out somewhere, you moved it into your muscles, and they converted it into mechanical energy.  Then you used the mechanical energy to exert forces.  Today, you used the original 55,000 joules to lift the flagstone, and NOW that energy is in the flagstone, 25 meters up off the ground !

6 0
2 years ago
A blue puck has a velocity of 3i –4j m/s. Its mass is 20 kg. What is its momentum?
damaskus [11]
P = m * v
v = {3i - 4j} = square root (3^2 + 4^2) = 5
P = 20 * 5
P = 100 kg m/s
6 0
2 years ago
Read 2 more answers
An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
Arturiano [62]
1) The kinetic energy of an object is given by:
K= \frac{1}{2}mv^2
where m is the object's mass and v its speed.

By using this equation, we find the initial kinetic energy of the skateboarder:
K_i= \frac{1}{2}(80 kg)(3 m/s)^2=360 J
and the final kinetic energy as well:
K_f= \frac{1}{2}(80 kg)(5 m/s)^2=1000 J

So, her change in kinetic energy is
\Delta K=K_f-K_i=1000 J-360 J=640 J

2) The work-energy theorem states that the work done to increase the speed of an object is equal to the variation of kinetic energy of the object:
W=\Delta K
Therefore, the work done by the skateboarder is
W=\Delta K=640 J
7 0
2 years ago
Read 2 more answers
A curtain hangs straight down in front of an open window. A sudden gust of wind blows past the window; and the curtain is pulled
VikaD [51]

Answer:

option B.

Explanation:

The correct answer is option B.

The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.

According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.

When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.

3 0
2 years ago
Other questions:
  • If a train is 100 kilometers away, how much sooner would you hear the train coming by listening to the rails (iron) as opposed t
    7·1 answer
  • postal worker on a bicycle travels at an average speed of 4m/s for 3 minutes. Work out how far she travelled.
    7·2 answers
  • A policeman starts giving chase 60 seconds after a stolen car zooms by at 108 km/hr. At what minimum speed should he drive if he
    12·1 answer
  • Question 8 (4 points)
    10·2 answers
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • Air escapes from a balloon at a rate of 2 60 ( ) 1 R t t   3 ft / min , where t is measured in minutes. How much air (in 3 ft
    8·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • If the charge that enters each meter of the axon gets distributed uniformly along it, how many coulombs of charge enter a 0.100
    11·1 answer
  • A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the c
    6·1 answer
  • A student decides to give his bicycle a tune up. He flips it upside down (so there’s no friction with the ground) and applies a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!