answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
1 year ago
11

If the charge that enters each meter of the axon gets distributed uniformly along it, how many coulombs of charge enter a 0.100

mm length of the axon?
Physics
1 answer:
SCORPION-xisa [38]1 year ago
3 0

Answer:

Charge enter a 0.100 mm length of the axon is 8.98\times 10^{-12} C

Explanation:

Electric field E at a point due to a point charge is given by

E=k \frac{q}{r^2}

where k is the constant =9.0 \times 10^9  Nm^2 / C^2

q is the magnitude of point charge and r is the distance from the point charge

Charges entering one meter of axon is 5.\times 10^{11} \times (+e)

Charges entering 0.100 mm of axon is 5.\times 10^{11} \times (+e) \times (0.1 \times 10^{-3}

substituting the value of +e=1.6\times 10^{-19} C in above equation, we get charge enter a 0.100 mm length of the axon is

q=5.\times 10^{11} \times1.6\times 10^{-19}  \times (0.1 \times 10^{-3}\\q=8.98\times 10^{-12} C

You might be interested in
An object can be broken up by a planet's gravity once it passes the _______. The Jovian planets are composed primarily of ______
Rina8888 [55]

Answer:1. Roche limit

2.hydrogen

3.atmosphere

4.mercury

5.venus

6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet

7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets

Explanation:

3 0
1 year ago
Read 2 more answers
A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop with a radius of 30.0 cm. A magnetic fie
IrinaK [193]

Answer: 3 x 10^-24 watt

Explanation:

P ( resistivity) = 1.72e-8 (from the chart).

L= 2pi r

r= 30 cm.

R= pL/A

A= pi* r1^2

r1= 0.8118/2 * 10^-3 m

R= 1.68 x 10^-8 x (2x3.142x0.3)

= 3.24 x 10^-8

E=N do/dt

do= B* A

A= pi* 0.3^2

N=1

E = 1 x (14 x 3.142x 0.09) = 3.95

I=v/R

v=E,

I = 3.95 / 3.24 x 10^-8 = 1.22 x 10^8

P=I^2 x R.

= 3 x 10^-24 watt

7 0
1 year ago
An engineer uses aluminum to build an airplane rather than composite materials that are lighter and stronger. He does this becau
AleksandrR [38]

Answer:

choosing a material that will show warning before it fails

Explanation:

According to my research on different architectural engineering techniques, I can say that based on the information provided within the question this is an example of choosing a material that will show warning before it fails. By choosing aluminum he can detect certain failures a long time before it actually happens since aluminum shows signs of wear and tear and doesn't just break immediately.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

4 0
2 years ago
Read 2 more answers
Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.
tamaranim1 [39]

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

4 0
1 year ago
8) A flat circular loop having one turn and radius 5.0 cm is positioned with its plane perpendicular to a uniform 0.60-T magneti
Marrrta [24]

Answer:

EMF induced in the loop is 9.4 V

Explanation:

As we know that initial magnetic flux of the loop is given as

\phi_1 = B.A

\phi_1 = (0.60)(\pi (0.05)^2)

\phi_1 = 4.7 \times 10^{-3} Wb

As soon as the area of the loop becomes zero the final magnetic flux of the loop is ZERO

Now as per faraday's law of electromagnetic induction the EMF is induced due to rate of change in magnetic flux

so we will have

EMF = \frac{\Delta \phi}{\Delta t}

so we will have

EMF = \frac{4.7 \times 10^{-3} - 0}{0.50 \times 10^{-3}}

EMF = 9.4 V

7 0
2 years ago
Other questions:
  • A 1.0 kg object is attached to a string 0.50 m. It is twirled in a horizontal circle above the ground at a speed of 5.0 m/s. A b
    6·1 answer
  • A hockey puck is pushed by a stick with a force of 750 newtons. The puck travels 2.0 meters in 0.30 seconds. How powerful is the
    12·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • Paula is studying two different animals. Both animals are classified within the same genus, but they are different species. Base
    14·2 answers
  • 12*8A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 13 feet. The ball is started in
    5·1 answer
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • To open a door, you apply a force of 10 N on the door knob, directed normal to the plane of the door. The door knob is 0.9 meter
    10·1 answer
  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 590 N/m. The block is pulled
    7·1 answer
  • Pool girl Paula has a problem. She has dropped two blocks into her pool. One, made of wood, floats on the surface. The other, ma
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!