2000
1box = 1400/7 = 200
200×3=600
1400+600=2000
Step-by-step explanation:
Given :Workers have packed 1,400 glasses in 7 boxes.
To Find :If they pack 3 more boxes, how many glasses will they have packed in all?
Solution:
Workers packed no. of glasses in 7 boxes = 1400
Workers packed no. of glasses in 1 box =
Workers packed no. of glasses in 3 boxes =
=
So, initially they packed 1400 glasses
If they pack 3 more boxes so, the pack 600 glasses more
So, The total no. of glasses have packed by workers = 1400+600 = 2000
Hence they have packed 2000 glasses in all.
Answer:
<em>Mean of the sample = 27.83</em>
<em> The variance of the the sample = 106.96</em>
<em> </em><em>Standard deviation of the sample = 10.34</em>
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given random sample of six employees
x 26 32 29 16 45 19
mean of the sample

Mean of the given data = 27.83
<u>Step(ii):-</u>
<u>Given data</u>
x : 26 32 29 16 45 19
x - x⁻ : -1.83 4.17 1.17 -11.83 17.17 -8.83
(x - x⁻)² : 3.3489 17.3889 1.3689 139.9489 294.80 77.9689
∑ (x-x⁻)² = 534.8245
Given sample size 'n' =6
The variance of given data
S² = ∑(x-x⁻)² / n-1

The variance of the given sample = 106.9649
<u> Step(iii):-</u>
Standard deviation of the given data

Standard deviation of the sample = 10.3423
Answer: 23 y 24 ( ó -23 y -24)
Step-by-step explanation:
Dos números consecutivos se escriben como:
n y (n + 1)
done n es un numero entero.
Entonces "El producto de dos números consecutivos es 552"
Se escribe como:
n*(n + 1) = 552
n^2 + n = 552
n^2 + n - 552 = 0
Tenemos una cuadrática, las posibles soluciones son obtenidas con la formula de Bhaskara.

Las dos soluciones son.
n = (-1 - 47)/2 = -48/2 = -24
n = (-1 + 47)/2 = 46/2 = 23
Si tomamos la primer solución, n = -24
Entonces los dos números consecutivos son:
n = -24
(n + 1) = -23
Si n = 23 entonces
n + 1 = 24
Lo cual tiene sentido, por que lo único que cambia son los signos, los cuales se cancelarían en la multiplicación.
Answer: The proportion of students spending at least 2 hours on social media equals 0.7257 .
Step-by-step explanation:
Given : The typical college freshman spends an average of μ=150 minutes per day, with a standard deviation of σ=50 minutes, on social media.
The distribution of time on social media is known to be Normal.
Let x be the number of minutes spent on social media.
Then, the probability that students spending at least 2 hours (2 hours = 120 minutes as 1 hour = 60 minutes) on social media would be:

Hence, the proportion of students spending at least 2 hours on social media equals 0.7257 .
Answer:
The correct option is (A) $304.47.
Step-by-step explanation:
The formula to compute the future value (<em>FV</em>) of an amount (A), compounded daily at an interest rate of <em>r</em>%, for a period of <em>n</em> years is:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
The information provided is:
A = $300
r% = 1.48%
n = 1 year
Compute the future value as follows:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
![=300\times [1+\frac{0.0148}{365}]^{365}\\\\=300\times (1.00004055)^{365}\\\\=300\times 1.014911\\\\=304.4733\\\\\approx \$304.47](https://tex.z-dn.net/?f=%3D300%5Ctimes%20%5B1%2B%5Cfrac%7B0.0148%7D%7B365%7D%5D%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%20%281.00004055%29%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%201.014911%5C%5C%5C%5C%3D304.4733%5C%5C%5C%5C%5Capprox%20%5C%24304.47)
Thus, the balance after 1 year is $304.47.
The correct option is (A).