Answer:
There were 3 adults
Step-by-step explanation:
Step 1: Derive the first expression
a+c=10...equation 1
where;
a=number of adults
c=number of children
And total number of people=10
Step 2: Derive the second expression;
Total cost of tickets=(price per child ticket×number of children)+(price per adult ticket×number of adults)
where;
Total cost of tickets=$186.50
price per child ticket=$15.95
price per adult ticket=$24.95
number of children=c
number of adults=a
replacing;
(15.95×c)+(24.95×a)=186.5
24.95 a+15.95 c=186.5....equation 2
Step 3: Combine equation 1 and 2 and solve simultaneously
24.95 a+15.95 c=186.5
-
24.95(a+c=10)
(24.95 a-24.95 a)+(15.95 c-24.95 c)=186.5-(24.95×10)
-9 c=-63
c=-63/-9
c=7
replace the value for c in equation 1
a+c=10
a+7=10
a=10-7
a=3
There were 3 adults
Answer:
3 - (n - 1) = 1/2(3n - 4)
Step-by-step explanation:
We want to write three minus the difference of a number and one equals one-half of the difference of three times the same number and four as an equation.
Let the number be n.
The first part is: three minus the difference of a number and one:
3 - (n - 1)
The second part is: one-half of the difference of three times the same number and four:
1/2(3n - 4)
Now, let us equate the first and second parts:
3 - (n - 1) = 1/2(3n - 4)
PS: I really do not understand the options
GoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogleGoogle
Answer:
![x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
According to the given situation, The computation of all x in a set of a real number is shown below:
First we have to determine the
so that 
![\left[\begin{array}{cccc}1&-3&5&-5\\0&1&-3&5\\2&-4&4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%5C0%261%26-3%265%5C%5C2%26-4%264%26-4%5Cend%7Barray%7D%5Cright%5D)
Now the augmented matrix is
![\left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\2&-4&4&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C2%26-4%264%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
After this, we decrease this to reduce the formation of the row echelon
![R_3 = R_3 -2R_1 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&2&-6&6\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_1%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%262%26-6%266%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_3 = R_3 -2R_2 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = 4R_2 +5R_3 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&4&-12&0\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%204R_2%20%2B5R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%264%26-12%260%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = \frac{R_2}{4}, R_3 = \frac{R_3}{-4} \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%20%5Cfrac%7BR_2%7D%7B4%7D%2C%20%20R_3%20%3D%20%5Cfrac%7BR_3%7D%7B-4%7D%20%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%261%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +3 R_2 \rightarrow \left[\begin{array}{cccc}1&0&-4&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B3%20R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +5 R_3 \rightarrow \left[\begin{array}{cccc}1&0&-4&0\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B5%20R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%260%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)

![x = \left[\begin{array}{c}4x_3&3x_3&x_3\\0\end{array}\right] \\\\ x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4x_3%263x_3%26x_3%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%20x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
By applying the above matrix, we can easily reach an answer
Step-by-step explanation:



