answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
9

A scientist measures a substance to be 0.8 grams. Calculate the percent of error in the measurement. Show all work for full cred

it.
Mathematics
1 answer:
Volgvan2 years ago
6 0
You'll need to give a bit more information for the question to be answered. You can only calculate the percentage of error if you know what the mass of the substance *should be* and what you've *measured* it to be.

In other words, if a substance has a mass of 0.55 grams and you measure it to be 0.80 grams, then the percent of error would be:

percent of error = { | measured value - actual value | / actual value } x 100%

So, in this case:

percent of error = { | 0.80 - 0.55 | / 0.55 } x 100%
percent of error = { | 0.25 | / 0.55 } x 100%
percent of error = 0.4545 x 100%
percent of error = 45.45%

So, in order to calculate the percent of error, you'll need to know what these two measurements are. Once you know these, plug them into the formula above and you should be all set!
You might be interested in
Andrea bought tacos from a food truck and left a 25 % 25%25, percent tip of $ 2.00 $2.00dollar sign, 2, point, 00. What was the
Murljashka [212]

Answer:

For this case we can make the following rule of three:

25% ----------------> 2 $

100% --------------> x

From here, we clear the value of x.

We have then:

Therefore, the value of the Taco that Andrea bought, before the tip, is $ 8.

the price of Andrea's tacos, before tip is $ 8.

3 0
1 year ago
Of 360 consumers polled some purchased ice cream some purchase frozen yogurt and some purchased both if 260 people polled purcha
Xelga [282]

Total customers are = 360

Number of polled people who purchased ice cream = 260

Number of polled people who purchased both ice cream and yogurt = 250

Hence, people who purchased only ice cream are=260-250=10

And 360-10=350 are people who purchased yogurt.

So, people who purchased yogurt only = 360-(250+10)=100


8 0
1 year ago
1,250 an 15% sale an 6.5 sales tax
eimsori [14]
Given:
price = 1,250
sales discount = 15%
sales tax = 6.5%

The problem is unclear whether the price is the original price or the discounted price. I am assuming that the price is the original price.

Original price times sales discount rate is the value of sales discount
1,250 x 15% = 187.50

Original price less the value of sales discount is the discounted price.
1,250 - 187.50 = 1,062.50

Discounted price times sales tax rate is the value of the sales tax
1,062.50 x 6.5% = 69.06 

Discounted price plus sales tax is the total cost of the purchase
1,062.50 + 69.06 = 1,131.56
4 0
2 years ago
Lindsey bought a picnic basket originally priced at $40 but on sale for 50% off. After 10% sales tax, what was the total cost?
MaRussiya [10]

Answer:

$30

Step-by-step explanation:

Given data

Origianal price= $40

discount= 50%

Tax= 10%

Let us find the amount of the discount and tax

Discount

=50/100*40

=0.5*40

=$20

Tax

=10/100*40

=0.1*40

=$4

Hence the total cost is

=40-20+10

=$30

7 1
2 years ago
Read 2 more answers
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Other questions:
  • The probability that a vehicle entering the Luray
    15·1 answer
  • Which represents the solution(s) of the graphed system of equations, y = x2 + 2x – 3 and y = x – 1?
    9·2 answers
  • An amusement parks sells adult tickets for $18 each and youth tickets for $12 each. Kalila is using the inequality mc014-1.jpg t
    9·2 answers
  • In an article appearing in Today’s Health a writer states that the average number of calories in a serving of popcorn is 75. To
    7·1 answer
  • Equation with parentheses help​
    13·1 answer
  • You have 3 online accounts in three different banks valued at: bank "A" = $250.67, 12% interest, bank "B" $765.13, 7% interest,
    5·1 answer
  • Kellianne lined up the interior angles of the triangle along line p below.
    15·1 answer
  • The lines below are perpendicular. If the slope of the green line is ą, what is
    10·1 answer
  • If $f(x)$ is a polynomial of degree 3, and $g(x)$ is a polynomial of degree 5, then what is the degree of polynomial $2f(x) + 4g
    15·1 answer
  • A middle school took all of its 6th grade students on a field trip to see a ballet at a theater that has 1300 seats. The student
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!