Please post in English so i or someone else can help you.
Answer:
h = 2 R (1 +μ)
Explanation:
This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the
let's use the mechanical energy conservation agreement
starting point. Lower, just at the curl
Em₀ = K = ½ m v₁²
final point. Highest point of the curl
= U = m g y
Find the height y = 2R
Em₀ = Em_{f}
½ m v₁² = m g 2R
v₁ = √ 4 gR
Any speed greater than this the body remains in the loop.
In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law
X axis
-fr = m a (1)
Y Axis
N - W = 0
N = mg
the friction force has the formula
fr = μ N
fr = μ m g
we substitute 1
- μ mg = m a
a = - μ g
having the acceleration, we can use the kinematic relations
v² = v₀² - 2 a x
v₀² = v² + 2 a x
the length of this zone is x = 2R
let's calculate
v₀ = √ (4 gR + 2 μ g 2R)
v₀ = √4gR( 1 + μ)
this is the speed so you must reach the area with fricticon
finally have the third part we use energy conservation
starting point. Highest on the ramp without rubbing
Em₀ = U = m g h
final point. Just before reaching the area with rubbing
= K = ½ m v₀²
Em₀ = Em_{f}
mgh = ½ m 4gR(1 + μ)
h = ½ 4R (1+ μ)
h = 2 R (1 +μ)
Answer:
18.5 m/s
Explanation:
On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

where
is the coefficient of static friction between the tires and the road
m is the mass of the car
g is the gravitational acceleration
v is the speed of the car
r is the radius of the curve
Re-arranging the equation,

And by substituting the data of the problem, we find the speed at which the car begins to skid:

Answer:
a. 
b. 
Explanation:
The inertia can be find using
a.





now to find the torsion constant can use knowing the period of the balance
b.
T=0.5 s

Solve to K'


Answer:
The elastic potential energy is zero.
The net force acting on the spring is zero.
Explanation:
The equilibrium position of a spring is the position that the spring has when its neither compressed nor stretched - it is also called natural length of the spring.
Let's now analyze the different statements:
The spring constant is zero. --> false. The spring constant is never zero.
The elastic potential energy is at a maximum --> false. The elastic potential energy of a spring is given by

where k is the spring constant and x the displacement. Therefore, the elastic potential energy is maximum when x, the displacement, is maximum.
The elastic potential energy is zero. --> true. As we saw from the equation above, the elastic potential energy is zero when the displacement is zero (at the equilibrium position).
The displacement of the spring is at a maxi
num --> false, for what we said above
The net force acting on the spring is zero. --> true, as the spring is neither compressed nor stretched