Hey there!
The pressure under a liquid column can be , calculated using the following formula :
P = p x g x h
P atm = 1.013 x 10⁵ Pa
g = 9.8 m/s²
h = ?
h = P / ( p x g ) =
h= ( 1.013 x 10⁵ Pa ) / ( 900 x 9.8 ) =
h = ( 1.013 x 10⁵ ) / ( 8820 ) =
h = 11.48 m ≈ 11.50 m
Hope this helps!
Answer:
b
Explanation:
he keep the thermoter in the water longer
We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired