Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m
Answer:
B i think is the answer
Explanation:
i feel like it is B because if you put them together and the answer is 1.5 so it is B
Answer: E= KQ/r^2
Explanation: An electric field is a region where an electric charge(positive or negative ) will experience a force.
The magnitude of an electric field E, at a point is given by Coulombs law as
E/ F/q
Where F= Coulombs force exertedon the charge and q= electric charge
E= F/q=(KQq)/r^2q
E=KQ/r^2
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct answer is option c
Explanation:
Faraday states that when there is a change in magnetic field of a coil of a wire, it means that there exist an emf in the circuit which in induced due to the change in the magnetic flux
From the question two separate but nearby coils are mounted along the axis. First coil is connected to the power supply and the current flow is controlled by the supply.When the current alternates, it would produce magnetic field ,also the second coil is connected to an ammeter which indicates the current that is flowing in it when current in the first coil changes
This magnetic field that is produce would cause a change flux which would induce current in the second coil so the ammeter would indicate current flow in the second coil
a is incorrect because the current in fir coil is not change hence flux won't change therefore current is is not induced in second coil
This is the same reason b is incorrect
d is incorrect due to the fact that when the second coil is connected to a power supply by rewiring it to be in series with first coil the law of electromagnetism would no longer hold so he ammeter would show no reading
1 watt = 1 joule/sec
2,000 watts = 2,000 joules/sec
(2,000 joule/sec) x (120 sec)
= (2,000 x 120) (joule-sec/sec)
= 240,000 joules .