Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A
Answer:
V₂ = 1.5 m/s
Explanation:
given,
speed of the first piece = 6 m/s
speed of the third piece = 3 m/s
speed of the second fragment = ?
mass ratios = 1 : 4 : 2
fragment break fly off = 120°
α = β = γ = 120°
sin α = sin β = sin γ = 0.866
using lammi's theorem

A,B and C is momentum of the fragments

4 x V₂ = 2 x 3
V₂ = 1.5 m/s
Answer:
v = 69.82 ms^-1
Explanation:
As we know,
R = vi2 sin2Ꝋ / g
vi2 =R g / sin2 Ꝋ where R is range R = 52m, Ꝋ = 3 Degrees
vi2 = 52 x 9.8 / sin 2(3) = 4875.227
v = 69.82 ms^-1
<span>If the net force acting on an object increases by 50 percent, then
the acceleration of the object will also increase by 50 percent.
This answer is not offered among the list of choices.
So the correct response is "D. none of the above"</span>
Answer:
a) 36 m
b) 64 m
Explanation:
Given:
v₀ = 0 m/2
v = 12 m/s
t = 6 s
Find: Δx
Δx = ½ (v + v₀) t
Δx = ½ (12 m/s + 0 m/s) (6 s)
Δx = 36 m
The track is 100 m, so the sprinter still has to run another 64 m.